ADVS Assessment [2019-2020]

Emphasis: Bioveterinary

Skill and Career Competencies [SCC]: Learning Outcome [LO] #2

Semester/Course: Fall 2019: ADSV 4560: Principles of Animal Genetics and Breeding

Artifact: Homework #6

The Homework #6 Assignment is an assessment of SCCLO #2. The assessment measures the student's ability to Demonstrate a working knowledge of mathematics including Calculus and Statistics by having students apply statistics to the characterization of quantitative traits and genetic prediction.

2. Demonstrate Quantitative competency.

ADVS 4560: Homework #6

Problems:

15.3) Cushy Pearson has a thing for bay colored horses. He purchased a single foal. He has four mares available: one brown, one mouse colored, one black, and one chestnut. Assume the following:

- The inheritance of coat color in horses is no more complicated than it appears in Table 15.1.
- Cushy has no information on the genotypes of his horses other than their phenotypes.
- No linkage exists among the four loci shown in Table 15.1.
- Frequencies of coat color alleles in the Thoroughbred population are estimated to be:

Allele	Frequency	
A	0.6	
a	0.3	
a^t	0.1	
c	0.7	
€ ^{cr}	0.3	
D	0.2	
d	0.8	
\boldsymbol{E}	0.3	

a. To which mare should Cushy mate his bay stallion in order to maximize the likelihood of producing a bay foal?

The Brown or Black mare

b. To which mare should Cushy be sure not to mate his stallion?

The Mouse mare

c. Prove your answers mathematically.

		bility That a ! Desired One-			Probability of Bay Foal
Color	Genotype	 СС	dd	<i>E</i> _	

Brown	a'a'CCddE_	0.8	1	1	0.8775	0.70
	or a'aCCddE_					
Mouse	aaC_D_E_	0.8	0.85	0.4	0.8775	0.24
Black	$aaCCddE_{\perp}$	0.8	1	1	0.8775	0.70
Chesnut	CCddee	0.92	1	1	0.65	0.60

Stallion genotype: A_CCddE_ (Bay)

Mares:

- 1. a'a'CcddE_ (Brown)
- 2. aaC_D_E_ (Mouse)
- 3. aaCCddE_(Black)
- 4. _CCddee (Chesnut)

*Begin proving the answer mathematically by first finding the A loci for the stallion and for all the mares. To find the probability of receiving a dominant A allele we will use the equation Pe[non-A] because we are looking for the probability of getting a non-dominant allele from each parent (anything besides the A).

- Start with the stallion:
 - o Pc[non-A] = ½ (probability of giving a non-A) + ½ (probability of giving a non-A)
 - P-{non-A} = ½ (0 because he has the large A allele) + ½ (a + a¹) because those
 are the frequencies of the non-A alleles; we do not know what the stallion has
 here so it could be either one
 - o Pe[non-A] = ½ (0) + ½ (0.3 + 0.1) = 0.2 probability of giving a non-A
- Now do each mare:
 - o Brown: Pc[noa-A] = ½ (a¹) +½ (a²) = ½ (1) +½ (1) = 1 because she is never going to give an A so she will always give a non-A allele, therefore the frequency is 100% or 1
 - Mouse: $P_0[non-A] = \frac{1}{2}(a^t) + \frac{1}{2}(a^t) = \frac{1}{2}(1) + \frac{1}{2}(1) = 1$ same as the mare above
 - O Black: $Pc[non-A] = \frac{1}{2}(a^t) + \frac{1}{2}(a^t) = \frac{1}{2}(1) + \frac{1}{2}(1) = 1$ same as the mare above
 - o Chestnut: Pe[non-A] = ½ (a + a¹) + ½ (a + a¹) = ½ (0.3 + 0.1) + ½ (0.3 + 0.1) = 0.4 because we don 't know the actual alleles in this mare, we use the frequencies for the non-A alleles in tegri place to find her probability

*Now we have found the probabilities for the stallion and the mares; the next step is to simulate a mating between them to find the actual probability of receiving a dominant A allele

 The equation will now look like this P[A] because it is the phenotype we are looking for.