
May	16-19,	2022

Regression	and	Classification	
Applied	to	Precision	Agriculture

Conference	on	Applied	Statistics	in	
Agriculture	and	Natural	Resources



Regression	and	Classification	
Applied	to	Precision	Agriculture	

Slides	 3-10
Slides	 11-22
Slides	 23-43
Slides	 44-65
Slides	 66-114
Slides		115-146	
Slides		147-167	
Slides		168-196	
Slides		197-244	
Slides		245-268	
Slides		269-305	

Contents:	

Introduction	to	the	Course		
Data	Science	Applied	to	
Agriculture	Principles	of	
Regression		Classification	and	
Clustering		Multiple	Regression	
Topics		Multilevel	and	Hierarchical	
Models		Regularization	Approaches		
Model	Selection		
Machine	Learning	Approaches		
Kernel	Regression		
Causal	Inference		
Concluding	Remarks		 Slides		306-311	

Conference	on	Applied	Statistics		
in	Agriculture	and	Natural	Resources	

May	16-19,	2022	



1

Regression	and	Classification	
Applied	to	Precision	Agriculture

May	16-19,	2022

Conference	on	Applied	Statistics	in	
Agriculture	and	Natural	Resources

Guilherme	J.	M.	Rosa	(Gee-Ler-Mee)
Department	of	Animal	and	Dairy	Sciences
Department	of	Biostatistics	and	Medical	Informatics
University	of	Wisconsin-Madison
Lab	website:	www.gjmrosa.org

2



2

Wisdom	of	Crowds
• Francis	Galton	(1822-1911)	
• Ox	weight	guessing	context
• Wisdom	of	Crowds	
Democratic	principle:	
“One	Vote	One	Value”	(Vox	Populi	)

3

Francis	Galton

• Behavioral	genetics,	“Nature	vs	Nurture”
• Weather	map,	Isochrone	map,	Anticyclone
• Regression	toward	the	mean,	Standard	deviation,	Galton	board,	
Galton	distribution	(log-normal),	Galton–Watson	process,	
Galton's	problem	(autocorrelation)

(England,	1822-1911)

4
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• In	1906	Galton	attended	a	farmers'	fair	in	Plymouth	where	he	was	
intrigued	by	an	ox	weight	guessing	contest.	Around	800	people	
entered	the	contest	and	wrote	their	guesses	on	tickets.	The	person	
who	guessed	closest	to	the	butchered	weight	of	the	ox	won	a	prize.

• After	the	contest	Galton	took	the	tickets	and	ran	a	statistical	
analysis	on	them.	He	discovered	that	the	average	guess	of	all	the	
entrants	was	remarkably	close	(under	by	only	1	lb !)	to	the	actual	
weight	of	the	butchered	ox	(1,198	lbs).

• The	collective	guess	was	not	only	better	than	the	actual	winner	of	
the	contest	but	also	better	than	guesses	made	by	cattle	experts.

Wisdom	of	Crowds

5

Results

Actual	weight:	1,198	lbs
Guesses	average:	1,197	lbs
Guesses	median:	1,207	lbs

Galton,	F.	(1907)	Vox	Populi.	Nature	75:	450-451.	
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• Democratic	principle:	“one	vote	one	value”
• Vox	Populi :	middlemost	estimate
• Model	averaging
• Ensemble	(Boosting)	methods,	combination	of	
weak	predictors

• Very	useful	in	regression	and	classification
• Resulting	combined	model	is	better	than	any	of	
the	models	alone

Remarks

7

• Least	squares	and	beyond
• Checking	model	assumptions
• Non-Gaussian	models
• Heteroscedasticity
• Variable	transformation
• Model	(variable)	selection
• Linear	and	non-linear	models
• Multi-collinearity
• Dimension	reduction	techniques
• Shrinkage	estimation
• Parametric	and	non-parametric
• Measurement	error

Regression/Classification	Topics
• Measurement	error
• Missing	data	imputation
• Multivariate	models
• Mixed	effects	(multilevel)
• Power	and	sample	size	calculation
• Bayesian	methods
• Monte	Carlo	methods
• Prediction,	interpretation,	causality
• Robust	regression
• Kernel	regression
• Machine	learning	approaches
• Software

etc., etc., e
tc.
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Outline
• Overall	Introduction;	Regression	and	
Classi5ication,	Digital	Agriculture

• Multiple	Regression
• Multilevel	and	Hierarchical	Models
• Regularization	Approaches
• Machine	Learning
• Kernel	Regression
• Causality

10
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Sustainability	on	Food	Production

Environmental	
Footprint

Rural	
Communities

Animal	
Welfare

Economic	
Viability

Human	Health

Land	and	Water	Use Efficiency	of	
Production

11

• Sensors
• Communication	Networks
• Unmanned	Aerial	Vehicles (UAVs)
• Robotic	Machinery
• Data	Analytics
• Data	Visualization
• Artificial	Intelligence
• Other	Technologies

Digital	Agriculture

12
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Sensor	Technology
• Automated	data	recording	systems
• Robotics	and	artificial	intelligence
• Real	time	measurements;	sensors
- Image
- Motion
- Sound
- Chemical	composition
- Spectroscopy
- etc.

13

Data	Collection

• Spatial	and	temporal	dimensions
• Multilevel:	animal	or	plant,	pen	or	plot,	farm,	geographical	region
• Historical	data	and	data	streaming	(real	time)
• Myriad	of	data	formats	(structured	and	unstructured) 14
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Surveys

Sensors Weather

Economics

Farm	management	
software

15

• Database	strategy	and	architecture	
(unstructured	and	structured	data;	temporal	scale,	etc.)

• Centralized	or	distributed,	local	or	cloud	storage	
(security,	privacy)

Data	Integration	and	Data	Processing

16
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Data	is	the	Fuel	for	AI

17

Data	Analytics	Tools	and	Goals

• Supervised	and	
Unsupervised

• Prediction,	Interpretation	
and	Causal	Inference

18
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From	Data	to	Decisions

Data Predictive

Prescriptive

Optimization

Descriptive

19

Tall	Data
Variables

Ob
se
rv
ati
on
s

• High	power	
(statistical	vs.	practical	significance)

• Asymptotic	properties
• Plenty	of	d.f. J

20
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Wide	Data

• “big	p,	small	n”	paradigm
• Collinearity
• Multiple	testing
• Penalized/regularized	regression
• Dimension	reduction	techniques

Ob
se
rv
ati
on
s

Variables

21

Data	Streaming	and	Batch	Processing

� Real	time	monitoring:
Animal- and	Farm	(or	pen)-level

� Management	optimization;	Genetic	improvement
Product	quality,	production	efficiency,	animal	wellbeing,	etc. 22
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Intro	to	Regression	and	Classification

23

Simple	Linear	Regression

β1: intercept

x

y

β7:	slope

E y = β1 + β7x

• If	x	=	0,	then	y	=	β1 (regression	intercept)
• Each	additional	unit	in	x	is	associated	with	β7 units	of	change	in	y
• Note:	regression	parameters	(β1 and	β7)	should	be	interpreted	only	
within	the	range	of	x	values	in	the	dataset.	 24
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CP	(%) DG	(kg)

6.3 0.48

10.7 0.79

12.4 0.55

15.4 0.72

19.1 1.03

23.3 0.89

Example:	Forage	crude	protein	(%	of	dry	matter)	
and	beef	cattle	average	daily	weight	gain	(kg)

• How	should	we	choose	the	line	(which	values	of	OβQ and	OβR)	
that	best	describes	the	data?
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• An	alternative	is	to	minimize	the	sum	of	the	squares	of	the	errors.

Crude	Protein	(%)

D
ai
ly
	G
ai
n
	(
k
g
)

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4
5																	10															15																20															25
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Errors:	eM = yM − βQ + βSxM

Sum	of	Squares:	∑MVS
W eM

X
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• Estimated	regression:	DG	=	0.3534	+	0.0268	x	CP
• What	is	the	interpretation	of	the	regression	coefficient	(slope)?

Fitted	Regression

CP	(%) DG	(kg)

6.3 0.48

10.7 0.79

12.4 0.55

15.4 0.72

19.1 1.03

23.3 0.89
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Multiple	Linear	Regression

• Response	variable	described	as	a	linear	
function	of	multiple	predictors:

• Multiple	linear	regression	includes	also	
models	with	interaction	between	predictor	
variables,	and	polynomial	regression:

y = β> + β@ x@ + βB xB +⋯+ βD xD + e

Interaction:	y = β> + β@ x@ + βB xB + βF (x@∗ xB) + e

Polynomial:	y = β> + β@ x + βB x
B + ⋯+ βD x

D+ e
28
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Example:	Carcass	Quality	of	Cull	Dairy	Cows
• Investigating	the	relationship	between	life	history	factors,	live	
animal	auction	price,	and	carcass	quality	of	cull	dairy	cows.	

Moreira,	L.	C.,	Passafaro,	T.	L.,	Schaefer,	D.	M.	and	Rosa,	G.	J.	M.	(2021)	
The	effect	of	life	history	events	on	carcass	merit	and	price	of	cull	
dairy	cows.	Journal	of	Animal	Science 99(1):	skaa401.

Dairy	Farms																										Sales	Barn																									Meat	packing	plant

29

Data	Integration

Farm	data

Carcass	
data

Cow	price	
and	weight

Average	
national	price

30



16

Available	Variables

Sales barn, USDA, Meatpacking plantFarm management software
31

Canonical	Correlation
Overall	structure	of	the	dataset,	
including	information	from	farm,	
sale	barn	and	packing	plant.

32
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Results

Least	squares	means	and	confidence	intervals	of	sale	BP	for	(A)	year	of	sale,	(B)	month	of	sale,	(C)	culling	

reason	(Prod:	low	production,	Bre:	breeding	problem,	Inj:	injury,	Mast:	Mastitis	and	udder	problem,	Abo:	

abort,	Feet:	Leg	and	feet	problem,	Other:	Other	reasons),	and	(D)	lactation	number. 33

Results

34
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Adjusted	Price
(corrected	for	seasonality)

r2 =	0.47,	RSME	=	0.1045,	
and	MAE	=	0.076

Barn	Price
(nominal	value)

r2 =	0.75,	RSME	=	$7.6/cwt,	
and	MAE	=	$5.8/cwt

Predictive	performance	for	cull	cow	price

Results

35

Variable	Transformation

• Centering	and	scaling:	y∗ =
89:8

;<
and	x∗ =

>9?>

;@

y∗ = βB
∗x∗ + ε∗ ⟶ FβB

∗ = Corr(x, y)

• Polynomial:	x∗ = xK,	where	λ = 2, 3, …

y = βR + βBx + βSx
S + βTx

T + ε

• Log:		y = exp βR + βBx + ε = BR×BB
>×ϵ,	

where	BR = exp βR ,	BB = exp βB ,	and	ϵ = exp ε

log(y) = βR + βBx + ε,	with	y > 0

36
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Variable	Transformation	(cont’ed)

• Log-log:		y = β<×x?@×ε

log(y) = log(β<) + βClog(x) + log(ε),	with	y > 0 and	x > 0

y∗ = β<∗ +βCx∗ +ε∗

• Others:	square-root,	inverse,	etc.

• Box-Cox		y = Q(y
R − 1)/λ if λ ≠ 0
log(y) if λ = 0

37

Non-Normal	Data
• Least	squares	coupled	with	resampling	techniques	
(e.g.	bootstrap	and	permutation)

• Data	transformation	(e.g.	Box-Cox)
• Generalized	linear	model	(exponential	family)
• More	general	models	(e.g.	mixtures)	using	Bayesian	MCMC
• Nonparametric	approaches,	Machine	Learning

38
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Non-Linear	Models

• Growth	curves:	Brody,	Gompertz,	and	Von	Bertalanffy models
• Lactation	curves:	Wood	and	Wilmink models

39

Amalfitano,	N.,	Rosa,	G.	J.	M.,	Cecchinato,	A.	and	Bittante,	G.	(2021)	Nonlinear	modeling	
to	describe	the	pattern	of	15	milk	protein	and	nonprotein	compounds	over	
lactation	in	dairy	cows.	Journal	of	Dairy	Science	104:	10950-10969.

Example:	Lactation	Modeling	of	Milk	Protein	Profile

• The	protein	profile	of	milk	includes	several	
caseins,	whey	proteins,	and	nonprotein	
nitrogen	compounds,	all	important	for	human	
nutrition	and	cheesemaking	properties

• Objective	was	to	model	the	pattern	of	each	N	compound	
expressed	qualitatively	(as	%	of	total	milk	N),	quantitatively	
(in	g/L	milk),	and	as	daily	yield	(in	g/d)

40
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Wilmink’s Model

• Four-parameter	model	(Wilmink 1987):

y= = a + b×exp −k×t + c×t + e

where y= is the milk production in time t,

and e is the error term. The four

parameters represent the persistency

coefficient (parameter c) that explains the

variation in the long-term milk

component (parameter a), the short-term

milk component (parameter b), and the

speed of adaptation (parameter k). Example	of	shapes	of	

lactation	curves.
41

M&M	and	Results
• Data	on	detailed	milk	nitrogenous	compound	profiles	(15	
fractions	for	each	expression	mode:	45	traits)	obtained	from	
1,342	cows

• Data	from	each	milk	trait	analyzed	with	the	NLMIXED	
procedure	of	SAS	using	the	final	model:

yMNOP = a + b×exp −k×t + c×t + breedi + parityj + herd_datek + eMNOP
with	fixed	effect	of	the	breed	of	the	cow	(4	classes:	Holstein-
Friesian,	Brown	Swiss,	Simmental,	local	breeds)	and	parity	(3	
classes:	1,	2,	and	≥3),	and	random	effect	of	herd-date	(n	=	41)

42
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Pattern of total protein, true
protein, and total CN content
during lactation expressed in
percentage of total protein (%
N), grams per liter of milk (g/L),
and daily production (g/d).

Pattern of αS1-CN, αS2-CN, and
β-CN content during lactation
expressed in percentage of
total protein (% N), grams per
liter ofmilk (g/L), and daily
production (g/d).

43

Classification	and	Clustering

44
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Clustering	vs.	Classification

X1

X2

Breed	
composition	I

Breed	
Composition	II

Breed	
Composition	III

45

Clustering	vs.	Classi/ication

X1

X2

Normal
Affected

Linear	
Classifier

46
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Cluster	Analysis
• Cluster	analysis	(or	clustering)	is	the	task	of	grouping	a	set	
of	objects	in	such	a	way	that	objects	in	the	same	group	
(cluster)	are	more	similar	(in	some	sense)	to	each	other	
than	to	those	in	other	groups	(clusters)

• It	is	an	unsupervised	exploratory	data	mining	technique	
used	in	many	@ields,	including	pattern	recognition,	image	
analysis,	etc.

• Many	algorithms	available,	such	as	K-means,	mixture	
models,	hierarchical	clustering	

47

K-means	algorithm	

3) Performs	iterative	(repetitive)	
calculations	to	optimize	the	positions	of	
the	centroids

4) The	algorithm	halts	when	the	centroids	
have	stabilized,	or	a	pre-defined	number	
of	iterations	has	been	achieved

1) Define	the	number	K	of	clusters
2) Randomly	selected	the	K	centroids,	which	are	used	as	the	

beginning	points	for	every	cluster

48
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Hierarchical	Clustering
• Hierarchical	clustering	involves	creating	clusters	that	have	a	

predetermined	ordering	from	top	to	bottom.	There	are	two	types	
of	hierarchical	clustering:	Divisive	and	Agglomerative.

• Divisive	or	top-down	method:	all	of	the	observations	are	initially	
assigned	to	a	single	cluster	and	then	partition	the	cluster	to	two	
least	similar	clusters.	Finally,	we	proceed	recursively	on	each	
cluster	until	there	is	one	cluster	for	each	observation.

• Agglomerative	or	bottom-up	method:	each	observation	is	
assigned	to	its	own	cluster.	Based	on	a	similarity	measure	(e.g.,	
distance)	the	two	most	similar	clusters	are	merged.	The	process	
is	repeated	until	there	is	only	a	single	cluster	left.	

49

Dendrogram
Hierarchical	Clustering

3	Clusters

Cluster	1 Cluster	2 Cluster	3
50
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Classification
• Discriminant or	Classification techniques	seek	to	categorize	

samples	into	groups	based	on	the	predictor	characteristics
• Examples	are:	assigning	a	given	email	to	the	"spam"	or	"non-

spam"	class,	and	assigning	a	diagnosis	to	a	given	patient	based	
on	observed	characteristics	of	the	patient	(sex,	blood	pressure,	
presence	or	absence	of	certain	symptoms,	etc.).

• Classification	is	a	supervised	approach	of	pattern	recognition.
• Linear	models:	logistic	regression,	linear	discriminant	analysis.	

Non-Linear	models:	Neural	networks,	support	vector	machines,	
K-nearest	neighbors,	Naïve	Bayes,	Classification	trees,	etc.

51

Classification

Support	Vector	Machine Decision	Trees
52
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Example:	Investigating	Factors	that	Affect
Beef	Production	and	Quality	in	Brazil

Objectives
1. Forecast	beef	cattle	production	and	quality,	using	a	large	scale	data	set	

integrated	from	different	sectors	of	industry	in	Brazil
2. Compare	prediction	quality	of	alternative	methods:	Generalized	Linear	

Model,	Random	Forest,	and	Neural	Network

53

23,056,869 carcasses 44,566 farms81,053 farms

Owner

Owner ID

Farm

iAge iFat

Year Month

Weight

Owner

Owner ID

FarmCityStateCityState

Category

Frequent 
Technical 
consulIng

Sales team

Year

pNutrition

tNutrition

wNutritionSeason

Carcass	production	and	quality Nutritional	variables

Economic	variables

Input Output

$ Unfinished cattle 

$ Corn

$ Finished cattle 
Temperature

Weather	variables

Rain fall

Humidity

Entity	Matching

Da
te	
Ma
tch

ing

Lo
ca
tio
n	M

atc
hin

g

54
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Data	Integration

81K	farms	JBS	x	44.5K	farms	DSM	~	3.6G	comparisons		

Dataset	1
Saint	Johns
Green	view
Laredo
Platte

Dataset	2
Glenview
St.	John’s
_platte_
Larredo

Analysis	Pipeline

55

Data	Integration
Comparison	of	Approaches	for	Farm	Data	Linkage

(Entity	Matching)

56
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Data	Integration
• Best classification methods:

Support Vector Machine (SVM)
(acc = 99.9%, prec = 91.1%, sens = 97.3%, spec = 99.9%)

Bagged Clustering (BC)
(acc = 99.9%, prec = 90.8%, sens = 93.2%, spec = 99.9%)

• Results indicate that both SVM and BC are suitable for
farm matching in scenarios where training labels are
available, or not, respectively.

Aiken	VCF,	Dorea JRR,	Acedo JS,	Dias	F	and	Rosa	GJM	(2019)	Record	linkage	for	farm-
level	data	analytics:	Comparison	of	deterministic,	stochastic	and	machine	learning	
methods.	Computers	and	Electronics	in	Agriculture 163:	104857. 57

Response	Variables

58
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Distribution	of	Farms	and	Market	Cattle

Distribution	of	farms	and	of	finished	
animals	in	the	data	set	per	state	in	Brazil	

59

Soil	and	Climate	Distribution

60
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Methods
Models:	Linear	Regression	(LR)

Generalized	Linear	Regression	(GLR)
Random	Forest	(RF)
Multilayer	Perceptron	Neural	Networks	(NN)

Predictors:	Animal	Category	(female,	steer,	bull),	Technician	Consulting,	
Nutrition	Product,	Corn	Price,	Sales	price,	Soil,	Climate,	Month,	
and	Age	at	Slather	(only	for	CW	and	FD)

Predictive	ability:	10-fold	Cross-Validation;	training	with	542,935	
(2014/2015)	and	testing	with	285,357	observations	(2016)

Continuous: Root	Mean	Square	Error	(RMSEp),	Coefficient	of	
Determination	(R2),	and	Mean	Absolute	Error	(MAE)

Categorical: Accuracy	and	the	Cohen’s	kappa	coefficient	(Kappa)

Software: R	package	“caret”	(Kuhn,	2019)
Center	for	High	Throughput	Computing	(CHTC)

61

Models	Predictive	Ability

62
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Animal	Category

Soil	and	Climate

Soil	and	Climate

Nutrition	and	
Sales	Price

Importance	of	Predictor	Variables

63

Computational	Requirements

Aiken	VCF,	Fernandes	AFA,	Passafaro TL,	Acedo JS,	Dias	F,	Dorea JRR	and	Rosa	
GJM	(2020)	Forecasting	beef	production	and	quality	using	large	scale	
integrated	data	from	Brazil.	Journal	of	Animal	Science 98(4):	skaa089.

For	All	Response	Variables	Combined:

Regression:	6	h	with	4	CPUs	and	40	GB	memory
Random	Forest:	2,370	h	with	109	CPUs	and	8	TB	memory
Neural	Network:	15,482	h	with	5,580	CPUs	and	223	GB	memory

64
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Regression	Modeling	Goals	and	Applications
• Prediction:	no	speci5ic	interest	on	interpretation	of	

regression	coef5icients	(black-box	and	nonparametric	
models	are	useful	as	well),	contribution	of	each	variable	on	
prediction	accuracy,	explores	association	(not	causal	
relationship)	between	target	variables	and	predictors

• Interpretation	of	model	parameter	estimates:	parametric	
model	backed-up	by	theory	related	to	domain	of	application,	
e.g.	in5initesimal	model	in	quantitative	genetics,	non-linear	
curves	(digestibility,	5luid	dynamics,	growth,	lactation,	etc.)

• Causal	inference:	hypothesis	testing	in	the	context	of	
controlled	randomized	trials	and	also	observational	data	
(issues	of	confounding	and	selection	bias)

65

Multiple	Regression
• Least-Squares
• Maximum	Likelihood
• Logistic	Regression
• Generalized	Linear	Models

66
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Multiple	Linear	Regression

• Response	variable	described	as	a	linear	function	of	
multiple	predictors:		y9 = β< + ∑?@A

B β? x9? + ε9

Response	
variable	(Y)

Predictor	(explanatory)	variables
XA XJ ⋯ XB

yA xAA xAJ ⋯ xAB
yJ xJA xJJ ⋯ xJB
⋮ ⋮ ⋮ ⋮
yM xMA xMJ ⋯ xMB

67

Multiple	Linear	Regression

• Model:		y4 = β7 + ∑:;<
= β: x4: + ε4

• Predictors	(explanatory	variables)	can	be	continuous	or	
categorical	(regression	and	ANOVA)

• Error	terms	(ε4) assumed	independent	from	each	other,	
with	mean	0 and	variance	σRS,	i.e.	ε4~44V(0, σRS)

• Some	additional	assumptions	related	to	the	distribution	
of	ε4 will	be	considered	later,	such	as	normality

68
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Multiple	Linear	Regression
• General	linear	model:	 5 = 78 + :
where	5 = [y?, yA, … , yC]E is	the	vector	of	observations	on	the	
response	variable,	8 = [βK, β?, … , βL]E is	the	vector	of	location	
parameters	(regression	coefficients),	7 is	a	known	incidence	
/design	(n×k) matrix	linking	each	observation	yS to	the	vector	8,	
and	: is	a	vector	of	error	terms,	assumed	:~(U, VσXA)

• Notice:	7 =

1 x?? x?A
1 xA? xAA

⋯ x?L
⋯ xAL

⋮ ⋮ ⋮
1 xC? xCA

⋱ ⋮
⋯ xCL

,	k = p + 1 and	: = 5 − 78
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Least	Squares
• Seek	estimate	./ that	minimizes	the	residual	sum	of	squares	
(RSS):	 RSS = ∑=>?

@ y= − Cy= D,	where	Cy= = GβI + ∑K>?
L GβK x=K

• Matrix	notation:	RSS = (O − P./)Q(O − P./)
= OQO − 2./QPQO + ./QPQP./

• Partial	derivatives:		UVWW
U/

= −2PQO + 2PQP./

• Equating	to	zero:	PQP./ = PQO → ./ = (PQP)[?PQO (LS	estimate)

• Proof	of	minimum:	U
\VWW
U/U/]

= 2PQP

(Hessian	matrix;	positive	definite	if	rank P = a)
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Least	Squares

• The	errors	. come	for	a	distribution	with	mean	0 and	variance	σ:
;,	

which	can	be	estimated	from	the	residuals	as:

s; =
@

ABC
∑EF@
A yE − IyE

; =
@

ABC
(K − LMN)P(K − LMN)

• Coefficient	of	determination:	fraction	of	the	variation	in	the	response	
variable	that	is	predictable	from	the	explanatory	variable(s):

R; =
∑UVW
X YZUB[ZU

\

∑UVW
X ZUB[ZU \

= 1 −
∑UVW
X ZUBYZU

\

∑UVW
X ZUB[ZU \

• Adjusted	R2:		Rabc
; = 1 −

∑UVW
X ZUBYZU

\/(ABC)

∑UVW
X ZUB[ZU \/(AB@)

= 1 −
(AB@)

(ABC)

∑UVW
X ZUBYZU

\

∑UVW
X ZUB[ZU \

71

Testing	Regression	Coef.icients

• Model:	y5 = E[y5|:5] + ε5 = β? + ∑ABC
D βA x5A + ε5

• If	normality	is	assumed	for	the	error	terms,	i.e.	ε5~55N(0, σRS),	then:
UV~N(V, (XYX)ZCσRS) and			(n − k) sS~σSχ(^Z_)

S

• For	any	regression	coefficient:

H?: βA = 0 → zA =
dβA
s νA

~ t^Z_

where	νA = jhi diagonal	element	of	(XYX)ZC
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“In	Least	Squares	We	Trust”

• Unbiased	estimator:	

E[:;] = >?>
@A
>?E B = >?>

@A
>?>; = ;

• Variance:	 Var :; = >?>
@A
>?Var B > >?>

@A

= >?>
@A
>?EσG

H> >?>
@A

= >?>
@A
σG
H

• Distribution	of	:; however	depends	on	the	distribution	of	B

• Inference	about	; can	be	performed	using	for	example	
Monte	Carlo	methods	such	as	Bootstrap
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Gauss-Markov	Theorem
• Linear	combination	of	the	parameters:	9 = ;<=,	
where	= = [βB, βC, … , βE]<

• LS	estimate:	H9 = ;<H= = ;<(J<J)LCJ<M

• E[H9] = ;< J<J LCJ<J= = ;<=

• Consider	any	linear	combination	S9 = T<M such	that	E[S9] = ;<=,	
i.e.	unbiased

• It	can	be	shown	that	Var ;<H= ≤ Var T<M

• Mean	squared	error:	MSE = E S9 − 9 = Var S9 + E[S9] − 9
\

74



38

Biased	or	Unbiased…

• LS	Estimator	of	σ5:		s5 =
8

9:;
∑=>8
9 y= − Ay= 5

• Unbiased:	s5~
CD

(9:;)
χ(9:;)
5 → E s5 =

CD

(9:;)
E χ(9:;)

5 = σ5

• What	about	the	estimator	of	σ?	

Var s5 > 0

Var s5 = E s5 − E[s] 5

= σ5 − E[s] 5

• So	that	 E[s] 5 < σ5 → E[s] < σ
75

More	on	the	LS	Methodology
• The	estimator	45678 = 45 = (;<;)>?;<@ is	called	ordinary	least	squares	
(OLS)	estimator,	and	it	is	indicated	only	in	situations	with	
homoscedastic	and	uncorrelated	residuals.

• If	the	residual	variance	is	heterogeneous	(i.e.,	Var(εM) = σM
O = wMσO),	the	

residual	variance	matrix	can	be	expressed	as	Var S = TσO,	where	W is	
a	diagonal	matrix	with	the	elements	wV,	a	better	estimator	of	β is	given	
by	45X78= (;<T>?;)>?;<T>?@ ,	which	is	generally	referred	to	as	
weighted	least	squares	(WLS)	estimator.

• Furthermore,	in	situations	with	a	general	residual	variance-covariance	
matrix	V,	including	correlated	residuals,	a	generalized	least	squares	
(GLS)	estimator	45]78= (;<^>?;)>?;<^>?@ is	obtained	by	minimizing	
the	generalized	sum	of	squares,	given	by	GSS = (@ − ;45)<^>?(@ − ;45).
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Maximum	Likelihood
• Likelihood	Function:	any	function	of	the	model	parameters	
that	is	proportional	to	the	density	function	of	the	data.	

• Hence,	to	use	a	likelihood-based	approach	for	estimating	
model	parameters,	some	extra	assumptions	must	be	made	
regarding	the	distribution	of	the	data.

• In	the	case	of	the	linear	model	@ = BC + E ,	if	the	residuals	
are	assumed	normally	distributed	with	mean	vector	zero	
and	variance-covariance	matrix	V,	i.e.	E~MVN(M, N),	the	
response	vector	y is	also	normally	distributed,	with	
expectation	E[@] = BC and	variance	Var[@] = N.
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Maximum	Likelihood	Estimation

• The	distribution	of	y has	a	density	function	given	by:

p(>|@, B) = (2π)GH/J|B|GK/Jexp −
1
2
(> − N@)OBGK(> − N@)

so	that	the	likelihood	and	the	log-likelihood	functions	can	be	
expressed	respectively	as:

L(@, B) ∝ |B|GK/Jexp −
1
2
(> − N@)OBGK(> − N@)

and

l @, B = log[L @, B ] ∝ −
1
2
|B| −

1
2
(> − N@)OBGK(> − N@)
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Maximum	Likelihood	Estimation

• Assuming	V known,	the	likelihood	equations	for	β are	given	
by	taking	the	first	derivatives	of	l ?, @ with	respect	to	β
and	equating	it	to	zero:

El ?, @

E?
≡
E

E?
G − I? J@KL G − I? = N

from	which	the	following	system	of	equations	is	obtained:
(IJ@KLI)KLQ?= IJ@KLG

• The	maximum	likelihood	estimator	(MLE)	for	β is	given	

then	by:	MLE ? = Q? = (IJ@KLI)KLIJ@KLG
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Maximum	Likelihood	Estimation

• If	the	inverse	of	789:;7 does	not	exist,	a	generalized	

inverse	(789:;7): can	be	used	to	obtain	a	solution	for	the	

system	of	likelihood	equations:

FG= (789:;7):789:;I

• Note:	Under	normality	the	MLE	coincides	with	the	GLS	

estimator	discussed	previously.	Similarly,	in	situations	in	

which	the	matrix	V is	diagonal,	or	when	V can	be	

represented	as	9 = RσT,	the	MLE	coincides	with	the	WLS	

and	the	OLS	estimators,	respectively.

80



41

Maximum	Likelihood	Estimation

• The	expectation	and	the	variance-covariance	matrix	of	the	
MLE	are	given	by:

E[?@] =(DEFGHD)GHDEFGHE J = (DEFGHD)GHDEFGHD@ = @

Var ?@ =(DEFGHD)GHDEVar J D(DEFGHD)GH= (DEFGHD)GH

• As	?@ is	a	linear	combination	of	the	response	vector	y,	we	
have	that	?@ ~MVN @, (DEFGHD)GH ,	from	which	confidence	

intervals	(regions)	and	hypothesis	testing	regarding	any	
(set	of)	element(s)	of	@ can	be	easily	obtained.
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Maximum	Likelihood	Estimation
• Note:	In	the	case	of	the	linear	model	9 = ;< + >,	with	
>~MVN(D, EσG),	it	can	be	shown	that:

J< = (;K;)LM;K9 → J<~N(<, (;K;)LMσG)

OσG =
1
n (9 − ;

J<)K(9 − ;J<) =
1
n 9 − ;J< G

OσG~σG
χ(SLT)G

n → E[OσG] =
n − k
n σG

WσG =
n

n − kOσ
G =

1
n − k 9 − ;J< G = sG → WσG~σG

χ(SLT)G

n − k
82
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Properties	of	Maximum	Likelihood	Estimators
• Consistency:	E[<θ]

?→A
θ

• Invariance:	<θ = MLE(θ) → g(<θ) = MLE[g θ ]
• Asymptotic	normality	and	efficiency:

n(<θ − θ) →
J
N(0, I(θ)NO)

where	I(θ) is	the	Fisher	information	matrix	
(Crámer-Rao	lower	bound:	Var(Wθ) ≥ I(θ)NO)

• Relation	to	Bayesian	inference:	A	maximum	likelihood	
estimator	coincides	with	the	posterior	mode	given	a	
uniform	prior	distribution	on	the	parameters
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Multicollinearity
• Multicollinearity	(also	collinearity)	is	a	linear	association	between	
predictors	variables,	i.e.	the	predictor	variables	are	correlated.

• Consequence:	regression	coefficient	estimates	may	change	erratically	
in	response	to	small	changes	in	the	model	or	the	data.

• Multicollinearity	however	does	not	reduce	the	predictive	power	or	
reliability	of	the	model.

• Under	extreme	multicollinearity,	parameters	may	be	not	estimable.
• Detection:	Large	changes	in	the	estimates	when	a	predictor	variable	
is	added	or	deleted;	variance	inflation	factor	(VIF)

• Modelling	alternatives:	Variable	Selection,	Dimension	Reduction,	
Shrinkage	Estimation
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Building	a	Regression	Model	for	Prediction
• Descriptive	analysis;	one-variable-at-a-time	models,	
pairwise	relationships	(scatter	plots	and	correlations)

• Prior	knowledge	(application	domain	expertise)	to	get	a	
starting	point,	i.e.	variables	to	include	in	the	model

• Try	adding	more	variables,	for	example	using	results	from	
descriptive	analysis

• Pruning	of	variables	based	on	results	(coefficients	sign	and	
p-values)

• Try	interactions,	especially	between	inputs	with	large	effects
• Some	trial	&	error,	there	is	not	a	universal	recipe
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High-Dimensional	Model	for	Prediction

• Exhaustive	search	generally	impractical
• Search	algorithms	(simulated	annealing,	genetic	algorithms)
• Alternative	model	comparison	criteria	(AIC,	BIC,	etc.)

• Model	building	strategies	will	depend	on	sample	size,	number	
of	input	variables,	and	other	models	characteristics	(random	
effects,	covariance	structure	search,	non-linear	terms,	etc.)

• Some	dimension	reduction	techniques,	variable	selection,	and	
shrinkage	estimation	will	be	discussed	later
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Logistic	Regression

• Linear	(simple	or	multiple)	regression	is	used	to	model	
continuous	outcomes	while	logistic	regression	deals	with	
binary	(yes	or	no)	outcomes

• yi =	0		or		yi =	1			à pi =	Prob(yi =	1)
• In	the	logistic	model,	the	log-odds	(the	logarithm	of	the	odds)	
is	a	linear	combination	of	the	predictor	variables:

log
pC

1 − pC
= βF + βH xCH + βJ xCJ + ⋯+ βL xCL
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Logistic	Regression

• Prob y0 = 1 = logit45(η0),	where	η0 = <0
=> is	the	linear	

predictor

• The	function	logit45 w =
EF

5GEF
transforms	continuous	values	

to	the	range	(0,1)

• Prob y0 = 1 = p0 ,		logit p0 = η0 = <0
=> = βL + ∑OP5

Q βO x0O

• Odds	ratio:	odds:	
Q
5GQ

,	ratio	of	two	odds:	
QU/(54QU)
QW/(54QW)

log
XYZ[ \]P5|_`
XYZ[ \]PL|_`

= βL + ∑OP5
Q βO x0O
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Logistic	Regression

• Latent	formulation:		y4 = 6
1, if z4 > 0
0, if z4 < 0

where	 z4 = β@ + ∑CDE
F βC x4C + ε4,	with	ε4 independent	logistic	

probability	distribution,	i.e.	Prob(ε4 < w) = logitPE(w)

• Hence:

Prob y4 = 1 = Prob z4 > 0

= Prob ε4 > −S4
TU

= logitPE S4
TU

-3							-2								-1									0									1										2

0.
0	
			
			
		0
.1
			
			
			
0.
2	
			
			
		0
.3
			
			
		0
.4

z

y	=	1

y	=	0
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Example:	Probability	of	passing	an	exam	versus	hours	of	study
Hours Pass
0.50 0
0.75 0
1.00 0
1.25 0
1.50 0
1.75 0
1.75 1
2.00 0
2.25 1
2.50 0
2.75 1
3.00 0
3.25 1
3.50 0
4.00 1
4.25 1
4.50 1
4.75 1
5.00 1
5.50 1

log p
1 − p = −4.0777 + 1.5046 × Hours

p = 1
1 + exp(4.0777 − 1.5046 × Hours)
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Generalized	Linear	Models
• The	models	discussed	so	far	assumed	a	Gaussian	(normal)	
distribution	of	the	response	variables

• Often	however	such	variables	are	expressed	as	a	binary	(e.g.,	
pregnancy	in	dairy	cattle,	or	germination	in	seeds)	or	count	
variable	(e.g.,	litter	size	in	swine,	or	fruits	in	trees)

• In	such	cases	the	linear	(Gaussian)	model	is	not	appropriate,	
and	a	generalized	linear	model	(GLM)	approach	is	necessary
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Generalized	Linear	Models

• GLM	can	actually	model	outcomes	(response	variables)	
generated	from	any	distribution	from	the	exponential	family,	
which	includes	the	normal,	binomial,	Poisson	and	gamma	
distributions,	among	others

• The	GLM	consists	of	three	elements:
1. Probability	distribution	from	the	exponential	family
2. Linear	predictor	η	=	Xβ
3. Link	function	g such	that	E(Y)	=	µ	=	g-1(η)
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The	Exponential	Family	of	Distributions

• Exponential	family:	set	of	probability	distributions	whose	
probability	density	(or	mass)	function	can	be	expressed	as:

p y|θ = h y exp η θ ⋅ T y − A(θ)

where	h y ,	η θ ,	T y and	A(θ) are	known	functions.

• Exponential	families	include:	Bernoulli,	beta,	binomial	(with	
fixed	number	of	trials),	categorical,	chi-squared,	Dirichlet,	
exponential,	gamma,	geometric,	inverse	Wishart,	multinomial	
(with	fixed	number	of	trials),	negative	binomial	(with	fixed	
number	of	failures),	normal,	Poisson,	Wishart,	among	others.
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The	Exponential	Family	of	Distributions

• Example	with	Gaussian	Distribution:

p y|θ =
1

2πσA
exp −

1
2σA

(y − µ)A

=
1

2π
exp − log σ −

yA

2σA
+
µy
σA
−
µA

2σA

= h y exp η θ I T y − A(θ)

where h y = K
AL
,		η θ = [µ/σA −1/(2σA)]Q,	

T y = [y yA] and		A θ = ST

AUT
+ log σ .
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Generalized	Linear	Models

Distribution Link	name Link	function,	Xβ = g(µ) Mean	function,	µ = Xβ
Normal Identity Xβ = µ µ = Xβ
Exponential

Negative	inverse Xβ = −µGH µ = −(Xβ)GH
Gamma

Inverse	Gamma Inverse	squared Xβ = µGJ µ = (Xβ)GH/J

Poisson Log Xβ = log(µ) µ = exp(Xβ)
Bernoulli,	
Binomial

Logit Xβ = log
µ

1 − µ
µ =

exp(Xβ)
1 + exp(Xβ)Categorical,	

Multinomial

• Common	distributions	and	canonical	link	functions:

95

Overdispersion

• Example	with	Poisson:	y7 = Poisson(µ7),	where	µ7 = exp(X7β)

• E[y7] = Var[y7] = µ7 = exp(X7β)

• Exposure	input:	y7 = Poisson(h7µ7),	where	µ7 = exp(X7β)

and	log(h7) is	called	offset;	E[y7] = Var[y7] = h7µ7

• Z-score:	z7 =
JKLMJK
NO(MJK)

=
JKLPKMQK

PKMQK
≈ N(0,1),	where	Vµ7 = exp(X7Wβ)

• Estimated	overdispersion:	
X

YLZ
∑7\X
Y z7

],	as	∑7\X
Y z7

]~χYLZ
]
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Overdispersion
• Overdispersed-Poisson	(or	negative-binomial	model)	

y7 = overdispersed Poisson(h7exp X7β ,w)
where	w	is	the	overdispersion parameter:	Var[y7] = wE[y7]

• Zero-inflated	Poisson	(ZIP)

G
Pr Y = 0 = π + (1 − π)eNO

Pr Y = k = 1 − π OQRST

U!
, k = 1,2,3, …

• Zero-truncated	Poisson	(ZTP)

Pr Y = k = ]^

(RTN_)U! , k = 1,2,3, …
97

Example:	Pig	Production	Data	Analytics
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Generalized	Additive	Mixed	Models

23 = 56 +8
9:;

<

59=39 + >3 with >3~B(0, FGH)General Linear Model:

L(M[23]) = 56 +8
9:;

<

59=39

Non-Gaussian	distribution	
(exponential	family)

Generalized	
Linear	Model

23 = 56 +8
9:;

<

59=39 +8
X:;

Y

Z[=3[ + >3

Z[~B(0, F[H)

Linear	Mixed	Model

Random	
effects

23 = 56 +8
9:;

<

9̂(=39) + >3

Additive	Model

Non-linear	
relationships	(smooth	

functions)

Hastie	T	and	Tibshirani R	(1986)	Generalized	additive	models.	Stat.	Sci.	1:	297-318.99

GAM: %('() = +,- +/

012

3

40(5(0)

Wood,	S.	N.	2017.	Generalized	Additive	Models:	An	Introduction	with	R.	2th ed.	CRC	Press.

'( = T U(

U(~EF '(, φ (i = 1, … , n)

row	i of	incidence	

matrix Vector	of	

parameters

Unknown	smooth	

functions	of	covariates	xij

- Smooth functions commonly depicted by reduced rank smoothing splines, including

different kind of polynomials such as the P-spline, adaptive variants, tensor products, thin

plate, and cubic splines

- Any reduced rank smoothing spline can be represented as fj = Xjbj , in which Xj is an n×pj
incidence matrix containing the smooth spline basis functions evaluated at vector xj, and bj
is the corresponding regression coefficient vector

- Type and size of the basis functions must be defined to prevent model overfitting, for

example using a penalization term in the model likelihood

- Fitting a GAM can be performed by penalized iteratively re-weighted least squares, given

the smoothing parameters

- Smoothing parameters can be estimated by generalized cross-validation or by restricted

maximum likelihood estimation

- GAM can be extended to accommodate random effects using empirical Bayesian approach
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• Data from 2013 to 2016
• More than 100 variables:
- Performance: Average daily gain, feed conversion, mortality, final
weight, initial weight, days on feed, etc.

- Economics: Profit, income, expenses, feed cost, genetic sales, etc.
- Management: Number of empty days, vaccinations, etc.
- Facilities: Type of feeder, type of drinker, construction age,
supervisor, manager, etc.

Pig	Production	Data	Analytics
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Location	of	ISF	Finishing	Farms

100	km
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Factors	Associated	with	Total	Transport	Losses

ØDirect	economic	losses	
for	producers

ØAnimal	welfare	and	well-
being	concern

• Dead	on	arrival	(DOA)
• Downer	or	slower	hogs

Passafaro TL,	Van	de	Stroet D,	Bello	NM,	Williams	NH	and	Rosa	GJM	(2019)	
Generalized	additive	mixed	model	on	the	analysis	of	total	transport	losses	
of	market-weight	pigs.	Journal	of	Animal	Science	97:	2025-2034. 103

Material	and	Methods
• Integration of movement and weather data

- Market-weight pigs
- July of 2014 to December of 2015

• Data editing
- Missing information
- Truck companies with less than 20 shipments
- Shipments with <100 or >210 pigs
- Farm - quarter of year combination with <5 records

• Final data
- 26,819 shipments
- 420 farms
- 2 processing plants
- 4,567,514 market-weight hogs
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The	weather	conditions	were	estimated	with	a	WKNN	using	the	R	package	kknn
(Hechenbichler &	Schliep,	2004),	with	22	weather	stations	

Description	of	the	variables	recorded	per	shipment	
during	1.5	years	at	ISF.

105
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Variable Mean SD Minimum Maximum

DOA, % 0.19 0.45 0.00 7.69

DOWN, % 0.57 0.85 0.00 12.80

Total losses, % 0.76 1.05 0.00 14.02

Number of pigs per shipment 170.3 8.4 100.00 201.00

Average body weight, lbs 276.6 12.7 230.6 319.8

Travel distance, km 136.6 63.4 35.6 396.5

Wind speed, mps 4.2 1.8 0.5 11.0

Precipitation, mm 2.3 5.9 0.00 58.1

THI 9.7 9.6 -16.5 26.3

DOA	=	Dead	on	arrival;	DOWN	=	Losses	due	to	
downer	hogs;	THI	=	Temperature	humidity	index

Descriptive	statistics	for	transport	losses	
and	continuous	explanatory	variables.
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Materials	and	Methods
• Statistical model

- Generalized Additive Mixed Models (GAMM): linear
predictor specified in terms of smooth functions of
covariates (Lin and Zhang, 1999)

• Base generalized linear mixed model
- Random effects: combination of farm - quarter of the
year, and truck company

- Fixed effects: abattoir, type of driver, management
group, distance traveled, average weight, wind speed,
precipitation, and THI

• Forward stepwise procedure
- Model deviance, Biological meaning, Significance
- Pairwise interactions
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Final	Model
• Base model without management group plus two interactions:

- Abattoir x average market-weight
- Wind speed x precipitation

• Analysis implemented with the R package mgcv (Wood, 2017)
108
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Results
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Results

Predicted	total	transport	losses	of	market	
weight	pigs	on	the	odds	ratio	scale

Distance	Traveled	(km)
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Results

Predicted	total	transport	losses	of	market	
weight	pigs	on	the	odds	ratio	scale

THI

To
tal
	Tr
an
sp
or
t	L
os
se
s

111

Results

Predicted	total	transport	losses	of	market	
weight	pigs	on	the	odds	ratio	scale

Average	Weight	(kg)

To
tal
	Tr
an
sp
or
t	L
os
se
s

112



57

Results

113

Conclusion
• Total transport losses caused by a complex system
involving multiple interacting factors, and non-linear
relationships

• Understanding factors associated with total transport
losses might assist farmers to improve management,
profit, and animal welfare

• GAMM is a flexible approach to model total transport
losses, accommodating both random and fixed effects,
and non-linear relationships
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Multilevel	and	
Hierarchical	Models

115

Outline
• Prediction	with	Multilevel	Data
• Mixed	Model	Methodology
• Overview	and	Derivation
• BLUE	and	BLUP
• Example
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Beef	Feedlots

Once young calves reach a weight of 300-
700 pounds (140 to 320 kg) they are
rounded up and transferred to a feedlot,
where they gain an additional 400-600
pounds (220 kg) on about 6-8 months.

Calving Weaning

Nursing

Feedlot
Market

Backgrounding Fattening
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Prediction	of	Final	Weight
• Data	on	image	feature	(e.g.	top-view	body	area)	of	cattle	
(explanatory	variable	x)	at	beginning	of	finishing	phase	
and	final	carcass	weight	(response	variable	y):

Area

• Predictive	model:		y = µ + b x + e
Intercept							slope									error	term
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Prediction	of	Final	Weight

• Data:

• Animal	j:	(x9, y9),	(j = 1,2, … , n)

• Model:		y9 = µ + β x9 + e9 ,	with	e ~ (0, σI
J)

• Predictions:	Ly = Mµ + Nβ xO,	Var(Ly) = QσI
J 1 +

R

S
+
(TUVWT)X

YZZ

Animal Area	(x) Weight	(y)

1 xR yR
2 xJ yJ
⋮ ⋮ ⋮

n xS yS

119

Data	from	Multiple	Feedlots

• Suppose	data	on	top-view	body	area	(x)	and	carcass	weight	(y)	
are	obtained	on	cattle	(j = 1,2, … , nE) from	multiple	feedlots	
(i = 1,2, … , k)

• Proposed	model:		yEI = µ + β xEI + eEI

• Notice:	a	model	that	ignores	group	effects	(feedlot	effect	in	this	
case)	will	tend	to	understate	the	prediction	error	because	of	
group-to-group	variability
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Multilevel	(Hierarchical)	Regression
• Model	with	farm	effects	(i.e.	farm-specific	intercepts)	as	well	as	
the	interaction	between	farm	and	the	covariable	x	(i.e.	farm-
specific	slopes):		y = farm + farm × x + error

• Equivalently:		yEF = fE + βE xEF + eEF
• Assuming	farm	effect	as	fixed	and	eEF ~ N(0, σNO):

• Predictions:
E yEF = fE + βE xEF and			Var yEF = σNO

Future	animal	on	surveyed	feedlot: SyET = UfE + VβE xET,	Var(SyET) = WσXY
O

Future	animal	on	future	feedlot:	SyTT = wild guess,	Var(SyTT) = ∞
121

Multilevel	(Hierarchical)	Regression

• Model:		y89 = (α + a8) + (β + b8) x89 + e89
with	a8 ~ N(0, σFG), b8 ~ N(0, σHG) and	Cov(a8, b8) = σFH

• Marginally:	E y89 = α + β x89 and		Var y89 = σFG + x89GσHG + 2σFH + σMG

• Conditionally:	E y89|a8, b8 = (α + a8) + (β + b8) x89 and		Var y89|a8, b8 = σMG

• Predictions:
Future	animal	on	surveyed	feedlot:
Sy8T = (Uα + Va8) + (Wβ + Wb8) x8T,	Var(Sy8T) = UσXYG

Future	animal	on	future	feedlot:	
SyTT = Uα + Wβ x89,	Var SyTT includes	(co)variance	components
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Mixed	Models	
Overview	and	Derivation	of	the	Mixed	Model	

Charles	Roy	Henderson
(1911-1989)

123

General	Linear	Model

y = Xβ+ ε
responses

design/incidence	
matrix	(known)

overall	mean	+	fixed	
effects	parameters

residuals

),0(N~      )I,(N~ 2
iid

i
2

n se®s0ε
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Analysis	of	Longitudinal	Data
• Suppose	a	series	of	longitudinal	data	(e.g.,	repeated	
measurements	on	time)	on	n	individuals.

Time	(z)

Re
sp
on
se
	(y
)
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Two-stage	Analysis	of	Longitudinal	Data
Step	1

yij = β0i +β1izij +β2izij
2 + εij

• Let	yij represent	the	observation	j	(j	=	1,2,…,ni) on	individual	
i (i =	1,2,…,n),	and	the	following	quadratic	regression	of	
measurements	on	time	(zij) for	each	individual:

where	β0i,	β1i and	β2i are	subject-specific	regression	
parameters,	and	εij are	residual	terms,	assumed	normally	
distributed	with	mean	zero	and	variance	σε2
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yi =Ziβi + εi

yi = (yi1, yi2,…, yini )
T

• In	matrix	notation	such	subject-specific	regressions	can	be	
expressed	as:

where , ,
andεi = (εi1,εi2,…,εini )

T ~ N(0, Iσε
2 )

βi = (β0i,β1i,β2i )
T

Zi =

1 zi1 zi1
2

1 zi2 zi2
2

  
1 zini zini

2

!

"

#
#
#
#
#

$

%

&
&
&
&
&

(1)
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β̂i = (Zi
TZi )

−1Zi
Tyi

• Under	these	specifications,	the	least-squares	estimate	of	βi is:

• Note	that	this	is	also	the	maximum	likelihood	estimate	of	βi
• Such	estimates	can	be	viewed	as	summary	statistics	for	the	
longitudinal	data,	the	same	way	one	could	use	area	under	the	
curve	(AUC),	or	peak	(maximum	value	of	yij),	or	mean	
response.
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β̂i =Wiβ+ui

Two-stage	Analysis	of	Longitudinal	Data
Step	2

• Suppose	now	we	are	interested	on	the	effect	of	some	other	
variables (such	as	gender,	treatment,	year,	etc.)	on	the	values	
of	βi

• Such	effects	could	be	studied	using	a	model	as:

where	ui ~	N(0,D),	which	is	an	approximation	for	the	model:
βi =Wiβ+ui (2)
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Single-stage	Analysis	of	Longitudinal	Data

• The	two	step-analysis	described	here	can	be	merged	into	a	
single	stage	approach	by	substituting	(2) in	(1):

which	can	be	expressed	as:

where	Xi =	ZiWi.	By	concatenating	observations	from	multiple	
individuals,	we	have	the	following	mixed	model:	

y =Xβ+Zu+ ε

yi =Xiβ+Ziui + εi

yi =Zi[Wiβ+ui ]+ εi
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Mixed	Effects	Models
• Frequently,	linear	models	contain	factors	whose	levels	represent	
a	random	sample	of	a	population	of	all	possible	factor	levels

• Models	containing	both	fixed	and	random	effects	are	called	
mixed	effects	models

• Linear	mixed	effects	models	have	been	widely	used	in	analysis	of	
data	where	responses	are	clustered	around	some	random	
effects,	such	that	there	is	a	natural	dependence	between	
observations	in	the	same	cluster

• For	example,	consider	repeated	measurements	taken	on	each	
subject	in	longitudinal	data,	or	observations	taken	on	members	
of	the	same	family	in	a	genetic	study

131

Linear	Mixed	Effects	Model

where:
y: response vector; observations
β: vector of fixed effects
u: vector of random effects; u ~ N(0, G)
X and Z: (known) incidence matrices
e: residual vector; e ~ N(0, Σ)

eZuXβy ++=

132
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Linear	Mixed	Effects	Model
• Generally, it is assumed that u and e are independent
from each other, such that:

• Inferences regarding mixed effects models refer to the
estimation of fixed effects, the prediction of random
effects, and the estimation of variance and covariance
components, which are briefly discussed next

÷÷
ø

ö
çç
è

æ
ú
û

ù
ê
ë

é
ú
û

ù
ê
ë

é
ú
û

ù
ê
ë

é
Σ0
0G

0
0

e
u

,MVN~

133

Estimation	of	Fixed	Effects

))(,(MVN~)(ˆ 11T1T11T -----= XVXβyVXXVXβ

• Let	1 = 34 + 6,	where	6 = ;< + =

such	that	1~MVN(34, D),	where	D = ;FGH + Σ

• Under	these	circumstances,	the	MLE	for	b is:

0euZeZuε =+=+= ][E][E][E][E
ΣZGZeZuZeZuε +=+=+= TT ][Var][Var][Var][Var
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• As	G and	S are	generally	unknown,	an	estimate	of	V is	used	
instead	such	that	the	estimator	becomes:

• The	variance-covariance	matrix	of	?@ is	now	approximated	
by	(CD?EFGC)FG

• Note:	(CD?EFGC)FG is	biased	downwards	as	a	consequence	
of	ignoring	the	variability	introduced	by	working	with	
estimates	of	(co)variance	components	instead	of	their	true	
(unknown)	parameter	values

yVXXVXβ 1T11T ˆ)ˆ(ˆ ---=

Estimation	of	Fixed	Effects
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• Approximated	confidence	regions	and	test	statistics	for	
estimable	functions	of	the	type	789 can	be	obtained	by	using	
the	result:

where	F[>?,>A] refers	to	an	F-distribution	with	φE = rank(7)
degrees	of	freedom	for	the	numerator,	and	φJ degrees	of	
freedom	for	the	denominator,	which	is	generally	calculated	
from	the	data	using,	for	example,	the	Satterthwaite’s	approach

],[

0T11TTT0T

DN
F

)(rank
)())(()(

jj

---

»
K

βKKXVXKβK

Estimation	of	Fixed	Effects
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• In	addition	to	the	estimation	of	fixed	effects,	very	often	in	
genetics	interest	is	also	on	prediction	of	random	effects.	

• In	linear	(Gaussian)	models	such	predictions	are	given	by	
the	conditional	expectation	of	u given	the	data,	i.e.	E[u|y].

• Given	the	model	specifications,	the	joint	distribution	of	y
and	u is:
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Estimation	(Prediction)	of	Random	Effects
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])[E]([Var][Cov][E]|[E 1T yyyyu,uyu -+= -

)())( 1TT1T XβyΣ(ZGZGZXβyVGZ -+=-= --

)ˆ()ˆ 1TT βXyΣ(ZGZGZu -+= -

• From	the	properties	of	multivariate	normal	distribution,	
we	have	that:

• The	fixed	effects	β are	typically	replaced	by	their	estimates,	
so	that	predictions	are	made	based	on	the	following	
expression:

Estimation	(Prediction)	of	Random	Effects
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Mixed	Model	Equations

• Henderson	(1950)	presented	the	mixed	model	
equations	(MME)	to	estimate	β and	u simultaneously,	
without	the	need	for	computing	V-1

• The	MME	were	derived	by	maximizing	(for	β and	u)	
the	joint	density	of	y and	u,	and	can	be	expressed	as:
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BLUE	and	BLUP
• Using	the	second	part	of	the	MME,	we	have	that:

so	that:
• It	can	be	shown	that	this	expression	is	equivalent	to:

and,	more	importantly,	that	BC is	the	best	linear	unbiased	
predictor	(BLUP) of	u

yΣZuGZΣZβXΣZ 1T11T1T ˆ)(ˆ ---- =++

)ˆ()(ˆ 1T111T βXyΣZGZΣZu -+= ----

)ˆ()ˆ 1TT βXyΣ(ZGZGZu -+= -
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BLUE	and	BLUP

yΣXuZΣXβXΣX 1T1T1T ˆˆ --- =+

yΣXβXyΣZGZΣZZΣXβXΣX 1T1T111T1T1T )ˆ()(ˆ ------- =-++

yΣZGZΣZZΣΣXXΣZGZΣZZΣΣXβ ])([}])([{ˆ 1T111T11T11T111T11T ------------- +-+-=

• Using	this	result	into	the	first	part	of	the	MME,	we	have	that:

• Similarly,	it	can	be	shown	that	this	expression	is	equivalent	to
,	which	is	the	best	linear	unbiased	

estimator	(BLUE) of	β.
yVXXVXβ 1T11T )(ˆ ---=
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• Notice	that	*+ and	./ require	knowledge	of	G and	Σ.	These	
matrices,	however,	are	rarely	known.	This	is	a	problem	without	
an	exact	solution	using	classical	methods.	

• The	practical	approach	is	to	replace	G and	Σ by	their	estimates	
(*E and	*F )	into	the	MME:

• Variance	and	covariance	components	estimation:
- Analysis	of	Variance	(ANOVA)
- Maximum	likelihood
- Restricted	maximum	likelihood	(REML)
- Bayesian	approach
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Li,	M.,	Rosa,	G.	J.	M.,	Reed,	K.	F	and	Cabrera,	V.	E.	(2022)	Investigating	the	impact	
of	temporal,	geographic,	and	management	factors	on	US	Holstein	lactation	
curve	parameters.	Journal	of	Dairy	Science	00(0):	0–0.	(submitted)

Example:	Lactation	Curves

• Wood’s	model:	y = atQeRST + ε

where	y is	the	milk	production	in	
day	t,	and	parameters	interpreted	
as	scale	(parameter	a),	rate	of	
increase	(parameter	b),	and	rate	
of	decay	(parameter	c)

Days	in	Milk	(DIM)

M
ilk
	p
ro
du
ct
io
n
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Material	and	Methods
• Test-day	milk	records	on	10M+	lactations	of	US	Holstein	cows
• Effects	of	spatial	(farm	region),	temporal	(calving	year,	and	calving	
month),	and	management	(milking	frequency,	age	at	calving	for	1st	
lactation,	and	parity)	factors	on	lactation	curve	parameters

• Two-step	approach:	
1) Individual	animal-parity	parameter	estimation	using	the	Wood’s	

model	(non-linear	least-squares	optimization)
2) Mixed-effects	model	analysis	of	parameter	estimates	(a,	b,	and	c)	

from	individual	lactation	curves
• Fixed	effects	of	spatial,	temporal,	and	
management	factors,	plus	the	random	
effects	of	animals	and	herds.
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Results

Histograms	of	fitted	individual	lactation	curve	(y = at7e89: + ε,	Wood	1967)	
parameters	a,	b,	c,	and	305-d	milk	yield	(a ∫L

MNO t7e89:dt)	for	all-lactations	
models	and	for	1st lactation	models. 145

Results

Lactation	curves	plotted	according	to	the	estimated	mean	of	
the	lactation	curve	parameters	for	each	lactation	group	and	

milking	frequency.	Triangles	indicate	the	peak.	 146
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Regularized	Regression
• Pros	and	Cons	of	Least-Squares
• Regularization	Techniques
- Variable	Selection
- Dimension	Reduction
- Shrinkage	Estimation

• Model	Selection
• Cross-Validation	Techniques
• Predictive	Quality	Metrics

147

Least	Squares	Regression

• Model	assumptions:		6 = 89 + ;,	with ;~(A, BσD),	i.e. eG~(0, σD)

• The	least	squares	estimate	of	b minimizes	the	residual	sum	of	
squares,	which	is	given	by:		RSS = P;QP; = (6 − 8S9)Q(6 − 8S9)

• Taking	the	derivatives	and	equating	them	to	zero…

• Hat	matrix	(projection	matrix):

S9 = (8Q8)YZ8Q6

P6 = 8S9 = 8(8Q8)YZ8Q6

H

i.i.d.
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Least	Squares

• Variance:	Var[12] = Var[(676)9:67;] = (67 6)9:67Var[;]6(676)9:

= (67 6)9:67<σ>6(676)9: = (67 6)9: σ>

(Gauss-Markov:	smallest	variance	among	unbiased	estimators)

• Expectation:	E[12] = E[(676)9:67;] = (67 6)9:67E ;

= (67 6)9:6762 = 2 (unbiased	estimator)

• Estimator	of	residual	variance:	

E[RSS] = E[(; − 612)7(; − 612)] = (n − p − 1) σ>

so	that	an	unbiased	estimator	of	σ> is:		s> =
:

(R9S9:)
(; − 612)7(; − 612)

Model	with	(p+1)	parameters:	
intercept	+	p	regression	coefficients	

149

Bias	vs.	Variance
• Let	/θ1 be	an	unbiased	estimator	of	θ with	variance	equal	to	V,	

i.e.,	E[/θ1] = θ and Var[/θ1] = V

• Which	estimator,	/θ1 or	/θB,	is	better?	(/θ1 is	unbiased,	/θB has	smaller	
variance…)

• Suppose	now	an	estimator	given	by	/θB = c×/θ1 ,	where	0 < c < 1,	

so	that	E[/θB] = c×θ (biased	estimator)	and Var /θB = cB×V < V

• Mean	squared	error	(MSE):	MSE /θ = E /θ − θ
B

= Var /θ + (E /θ − θ)B

=	variance	+	squared	bias
150



76

Problems	with	Least	Squares
• Multicollinearity:	regression	coefficient	estimates	
may	change	erratically	in	response	to	small	
changes	in	the	model	or	the	data

• Under	extreme	multicollinearity,	parameters	may	
be	not	estimable

• Prediction	accuracy:	unbiased	but	large	variance
• Modelling	alternatives:	Some	sort	of	regularization	
technique
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Regularization	Techniques

• Variable	Selection:	Best	subset	regression,	
Stepwise	regression	(forward,	backward,	hybrid)

• Dimension	Reduction:	Principal	Component	
Regression,	Partial	Least	Squares

• Shrinkage	Estimation:	Ridge	Regression,	LASSO	
(variable	selection	and	shrinkage	simultaneously),	
Elastic	Net
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Dimension	Reduction
• Stepwise	Regression:

Intercept	only:	y = b9 + e

Full	model:	y = b9 + b< x< + b> x> +⋯+ b@ x@ + e

Forward:	start	with	an	intercept	
model	and	add	predictors	based	
on	some	model	selection	criteria

Backward:	start	with	a	full	model	
and	remove	predictors	based	on	
some	model	selection	criteria

- Common	model	selection/comparison	criteria:	AIC,	BIC,	LRT,	etc.
153

Dimension	Reduction
. = 01 + 3 → 51 = (070)9:07. → ;. = 0<=>51- Least	Squares:

• Principal	Component	(PC)	Regression:
1.	Use	singular	value	decomposition	(SVD)	to	form	new	latent	vectors	
(PCs)	associated	with	a	low-rank	approximation	of	X

0 = VWX7
n×p (n×p)(p×p)(p×p)

T PT

V7V = X7X = [
D:diagonal	matrix	of	singular	values	in	
descending	order	(d: ≥ d] ≥ ⋯ ≥ d_)

Columns	of	T:	“principal	components”	(factor	scores,	latent	variables)
Columns	of	V:	“loadings”
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• PC	Regression	(Cont’ed):

2.	Form	a	low-rank	approximation	of	X by	

keeping	just	the	first	k	<	p	PCs	(the	ones	

associated	with	the	k	largest	singular	values):	 G ≈ IJKJ
L

3.	Regress	y on	this	lower-dimensional	feature	space	using	the	PCs	as	

the	new	features: N = IJP + R → P̂ = (IJ
LIJ)

UVIJ
LN

4.	Prediction	of	future	y:

Notice:	As	G = IJKJ
L → GKJ = IJKJ

LK = IJ

Notice:	The	columns	of	T are	orthogonal	to	each	other	(T =	UD),	

so	IJ
LIJ is	a	diagonal	matrix

G^_` → aN = G^_`KJP̂
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• Partial	Least	Squares:

- PC	Regression:	X =	UDV
T
=	TP

T
;	T =	XP (columns	of	T	are	the	PCs)

Note	that	vectors	in	P are	eigenvectors	of	X
TX;	X

TX =	VDU
TUDVT =	VD

2
VT

- If	columns	of	X are	centered	on	zero,	then	X
TX is	proportional	to	the	

sample	covariance	matrix

- Thus,	the	first	k	PCs	maximize	the	ability	to	describe	the	covariance	

or	spread	of	the	data	in	X

- Problem: Rotation	and	data	reduction	to	explain	variation	in	X does	

not	guarantee	to	yield	latent	features	that	are	good	for	predicting	y

- Solution: Projection	of	latent	variables	to	maximize	the	covariance	

between	X and	y.	For	example,	for	the	first	latent	vector,	search	for	a	

vector	t =	Xw that	maximizes	Cov(Xw,	y)	subject	to	wTw =	1
156
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Shrinkage	Estimation

• Ridge	Regression: 3456789 = arg min ; − =4 > ; − =4 + λA
BCD

E

bBG

Complexity	
parameter	(λ > 0)

Or,	equivalently:	3456789 = arg min ; − =4 > ; − =4 , subject	to	∑BCD
E bBG ≤ s

Zb[ = \y =
1
nAy6

After	centering	y6 and x6`s (i.e. y6 − \y and	x6 − \x)

RSS λ = ; − =4 > ; − =4 + λ4>4 → 3456789 = (=> = + λc)dD=>;

à “squared	magnitude”	of	coefficients	added	as	a	penalty	term
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Shrinkage	Estimation

• LASSO:	least	absolute	shrinkage	and	selection	operator

à “absolute	value	of	magnitude”	of	coefficients	added	as	a	penalty	term

?@ABCCD = arg min F − H@ I F − H@ , subject	to	∑MNO
P |bM| ≤ t

• Advantages:	Lasso	shrinks	the	less	important	features’	coefficient	to	zero	
(i.e.	feature	selection)

• Disadvantages:	In	"large	p,	small	n"	situations	(i.e.	high-dimensional	data	
with	few	examples),	LASSO	selects	at	most	n	variables	before	it	saturates.
If	there	is	a	group	of	highly	correlated	variables,	then	the	LASSO	tends	to	
select	one	variable	from	the	group	and	ignore	the	others	 158
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The	solid	green	areas	are	the	constraint	regions	 β1 + β3 ≤ t (lasso)	
and	β13 + β33 ≤ t3 (ridge	regression),	while	the	red	ellipses	are	the	

contours	of	the	least	squares	error	function.

Representation	of	lasso	(left)	and	
ridge	regression	(right)	estimation

159

Contours	of	constant	value	of	∑012
3 |b0|6 for	given	values	of	q.

Shrinkage	Estimators:	Generalization

CD = arg min F − HD I F − HD + λL
012

3

|b0|6 , q ≥ 0
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Shrinkage	Estimation

• Elastic	Net	Regression:

56789:; = arg min = − ?6 @ = − ?6 + BCD

EFC

G

|bE| + BJD

EFC

G

bE
J

BC = 0 → ridge	(i.e.	L2 regularization	only)

BJ = 0 → lasso	(i.e.	L1 regularization	only)

BC > 0 and	BJ > 0 → both	L1 and	L2 regularization	

161

Model	Selection
• Goodness-of-Fit	vs.	Model	Complexity

F Bias-variance	tradeoff	

Over-reduction Good	Fit Overfitting
x

y

x x

y y

162
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Ribeiro,	L.	A.	C.,	Bresolin,	T.,	Rosa,	G.	J.	M.,	Casagrande,	D.	R.,	Danes,	M.	A.	C.	and	Dórea,	J.	R.	

R.	(2021)	Nonlinear	modeling	to	describe	the	pattern	of	15	milk	protein	and	nonprotein	

compounds	over	lactation	in	dairy	cows.	Journal	of	Animal	Science	99(9):	1–8.

Example:	Prediction	of	Cattle	Grazing	Activities

• Wearable	sensors	have	been	explored	as	an	

alternative	for	real-time	monitoring	of	cattle	

feeding	behavior	in	grazing	systems.

• Goal	to	evaluate	the	the	effect	of	different	cross-validation	

strategies	on	the	prediction	of	grazing	activities	in	cattle	

using	wearable	sensor	(accelerometer)	data	and	ML	

algorithms.

163

Material	and	Methods
• Six	steers	(average	live	weight	of	345	± 21	kg)	had	their	
behavior	visually	classified	as	grazing	or	not-grazing	for	a	
period	of	15	d.	

• Elastic	Net	Generalized	Linear	Model	(GLM),	Random	Forest	
(RF),	and	Artificial	Neural	Network	(ANN)	were	employed	to	
predict	grazing	activity	(grazing	or	not-grazing)	using	3-axis	
accelerometer	data.	

• Three	CV	strategies	were	evaluated:	holdout,	leave-one-
animal-out	(LOAO),	and	leave-one-day-out	(LODO),	all	with	
similar	dataset	sizes	(n	~	57,000).

164
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Accelerometer
• 3-axes	(X,	Y,	and	Z)	
wireless	accelerometer	
sensor	was	attached	to	the	
halter	on	the	back	of	each	
animal’s	neck.	

• The	X,	Y,	and	Z	axes	
indicate	longitudinal	
(front-to-back),	horizontal	
(side-to-side),	and	vertical	
(up-to-down)	head	
movements,	respectively.

Raw	data	from	one	experimental	point	day	for	
grazing	(top)	or	not-grazing	(bottom)	behavior	
categories.	The	X,	Y,	and	Z	accelerometer	axis	
values	(g-force)	are	represented	in	blue,	green,	

and	red	colors,	respectively. 165

Results

166
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Results

• Overall,	GLM	delivered	the	worst	prediction	accuracy	
compared	with	the	ML	techniques,	and	ANN	performed	
slightly	better	than	RF	for	LOAO	and	LODO	across	CV	
strategies.	

• The	holdout	yielded	the	highest	nominal	accuracy	values	for	
all	three	ML	approaches,	followed	by	LODO	and	LOAO.	

• Nonetheless,	the	greater	prediction	accuracy	of	holdout	CV	
may	simply	indicate	a	lack	of	data	independence	and	the	
presence	of	carry-over	effects	from	animals	and	grazing	
management.

167

Model	Selection
Low	Variance High	Variance

Lo
w	
Bi
as

Hi
gh
	Bi
as

168



85

Model	Selection

ðGoodness-of-fit

• likelihood	ratio	approach	(LRT;	nested	models)

ðModel	complexity

• number	of	free	parameters,	p	(effective	number)

Linear	(regularized)	fitting:		 FG = IG → p = trace(I)

LRT = −2×ln
LN
LO

~χ(RSTRU)
O

169

Effective	Number	of	Parameters
• Example	with	a	simple	linear	regression:
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Model	Selection

• Balancing	goodness-of-fit	and	complexity

・ Akaike	information	criterion	(AIC):		AIC = 2p − ln(L)

・ Bayesian	information	criterion	(BIC):		BIC = p×ln(n) − 2ln(L)
(or	Schwarz	Criterion)

• If eF~N(0, σL) then:

AIC = 2p + n×ln NOO
P and		BIC = Q

RS RSS + p×ln L

i.i.d.
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Model	Selection
• Example:	linear	vs.	quadratic	regression
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Predictive	Ability

Behavior	of	test	sample	and	training	sample	error	
as	the	model	complexity	is	varied.

Model Complexity

Pr
ed

ict
io

n 
Er

ro
r
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Cross-Validation
• Holdout	method:	In	the	holdout	method,	the	data	points	are	

randomly	assigned	to	two	sets	d0 and	d1,	usually	called	the	
training	set	and	the	test	set,	respectively.	

• The	size	of	each	of	the	sets	is	arbitrary	although	typically	the	
test	set	is	smaller	than	the	training	set.	The	model	is	then	
trained	on	d0 and	tested	(i.e.	evaluate	its	performance)	on	d1.

Original	Dataset
Training	Dataset

Testing	Dataset

Model	fitting,	estimation	
of	parameters

Prediction	of	observations
174
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Cross-Validation
• K-Fold	Cross-Validation:	The	original	sample	is	randomly	

partitioned	into	K	equal	sized	subsamples.	One	of	the	
subsamples	is	retained	as	the	validation	data,	and	the	
remaining	K	- 1	subsamples	are	used	as	training	data.	

• The	CV	process	is	repeated	K	times,	one	for	each	subsample.	
The	K	results	are	then	averaged	to	produce	a	single	estimation.

• Illustration	of	K-fold	CV	when	n	=	12	observations	and	K	=	3.

175

Cross-Validation
• Leave-one-out	cross-validation	(LOOCV): One	observation	is	

removed	from	the	original	dataset,	to	be	used	as	validation.	The	
model	is	trained	on	the	remaining	n-1	observations,	and	tested	
on	the	observation	left	out.	The	process	is	repeated	n	times,	so	
that	each	observation	is	used	once	as	validation.	Results	are	
averaged	across	the	n	validation	data	points.

• Illustration	of	a	LOOCV	when	n	=	8	observations.	A	total	of	8	
models	will	be	trained	and	tested.
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Leave-One-Out	
Cross-Validation	

(LOOCV)

Lin
ea
r

Quadratic

Obs Linear Quadr
1 -1.333 -3.0
2 1.000 1.0
3 -0.286 -1.0
4 -0.333 3.0

PRESS 2.971 20.0

177

Predictive	Quality	Metrics

• Prediction	of	Binary	Outcomes
Metrics	usually	assess	the	frequency	of	two	types	of	error:	false	
positive	(a.k.a.	nuisance	alarm)	and	false	negative	(a.k.a.	missing	
alarm)	errors	via	tables	of	errors,	or	confusion	matrix:

Prediction
True	Category	(Ground	Truth)

y	=	0 y	=	1

JK = L True	Negative	(TN) False	Negative	(FN)

JK = O False	Positive	(FP) True	Positive	(TP)

Example:
Y	=	0	for	healthy
Y	=	1	for	disease

178
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Predictive	Quality	Metrics

Prediction

True	Category	(Ground	Truth)

y	=	0 y	=	1

=> = ? True	Negative	(TN) False	Negative	(FN)

=> = B False	Positive	(FP) True	Positive	(TP)

Accuracy =
TP + TN

TP + FN + TN + FP

Accuracy	can	be	a	misleading	metric	for	imbalanced	data	sets.	Consider	

a	sample	with	95	negative	and	5	positive	values.	Classifying	all	values	as	

negative	in	this	case	gives	0.95	accuracy	score.
179

- Some	other	commonly	used	metrics:

F4 score = 2×
Recall×Precision
Recall + Precision

Recall =
TP

TP + FN
(Sensitivity)

Precision =
TP

TP + FP
(Positive	Predictive	Value)

SpeciCicity =
TN

TN + FP
(Selectivity)

(Harmonic	Mean	of	
Recall	and	Precision)

Balanced Accuracy =
Recall + SpeciCicity

2
180
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- Two	useful	plots:

Generally,	ROC	curves	should	be	used	when	there	are	roughly	equal	
numbers	of	observations	in	each	class.	Precision-Recall	curves	

should	be	used	when	there	is	a	moderate	to	large	class	imbalance.

Recall

Pr
ec

isi
on

Precision-Recall	Curve

1 - Specificity

Se
ns

iti
vi

ty
 (R

ec
al

l)

Receiver	Operating	
Characteristic	Curve	(ROC)
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Predictive	Quality	Metrics

• Prediction	of	Continuous	Outcomes

- Predictive	Correlation:	r = Corr y, ;y , or its square r2

- Mean	Squared	Error:	MSE = mean [y − ;y]C

- Root	Mean	Squared	Error:	RMSE = MSE

- Mean	Absolute	Error	(MAE):	MAE = mean y − ;y

- Mean	Absolute	Scaled	Error	(MASE):	MASE = mean IJKI

LMNO(I)

182
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Predictive	Quality	Metrics
• Identification	of	objects	within	the	images

- Intersection	over	Union	(IoU)

Area	identified

Target	
object

183
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Out-of-bag	cross-validation

Training	set
Dog

Dog

Dog
Dog

Cat

Cat

Cat
Cat

Cat ✓

Dog ✓ Dog !

185

“Prediction	is	very	difficult,	
especially	about	the	future.”

(Niels Bohr,	1885-1962)
186
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Dairy	Cow	Feed	Intake	Prediction	Using	Milk	MIR

dry	matter	intake	
mid-infrared	(MIR)	
spectroscopy	

milk	sample

Dorea,	J.	R.	R.,	Rosa,	G.	J.	M.,	Weld,	K.	A.	and	Armentano,	L.	E.	(2018)	Mining	
data	from	milk	infrared	spectroscopy	to	improve	feed	intake	predictions	
in	lactating	dairy	cows.	Journal	of	Dairy	Science	101:	5878-5889.	 187

Experimental	Data
• Improve	intake	predictions
• Hard	to	measure	in	practical	conditions	– Feed	efficiency
- 310	cows	from	5	trials
- 1276	observations	of	DMI,	behavior	(visit	duration),	milk	yield,	
BW,	milk	spectra

- Milk	spectra:	1060	wavelengths
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Milk	Mid-infrared	Spectra
- Milk	spectra:	1060	wavelengths
- CV	>	1%:	362	wavelengths

189

Markov	Blanket
• Dimension	reduction	techniques
• Bayesian	Network;	Markov	Blanket	(MB):

- MB	of	a	variable	X	is	the	smallest	set	
MB(X)	containing	all	variables	carrying	
information	about	X	that	cannot	be	
obtained	from	any	other	variable

- In	a	DAG,	this	is	the	set	of	all	parents,	
children,	and	spouses	of	X.

- Milk	spectra	MB:	33	wavelengths
190
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Data	Analysis;	Models
• Approaches:	Partial	least	squares	(PLS)	and	

Artificial	neural	network	(ANN)
1) Milk	yield,	BW0.75,	DIM
2) Milk	yield,	BW0.75,	DIM,	and	362	WL
3) Milk	yield,	BW0.75,	DIM,	and	33	WL	(MB)
4) Milk	yield,	BW0.75,	DIM,	Fat,	Protein	+	Lactose
5) Milk	yield,	BW0.75,	DIM,	33	WL,	Visit	duration
6) Milk,	DIM,	and	33	WL	(MB)
7) 362	WL	(WL)
8) 33	WL	(MB)

191

Data	Analysis;	Model	Validation

• Validation:	Independent	datasets

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5

Trial 1 Trial 2 Trial 3 Trial 5Trial 4

5	times

…

192
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Results

• Milk	components	vs raw	spectra:	better	performance	with	ANN
193

Results

• Variable	selection	through	MB	improved	model	performance,	
decreasing	RMSEP 194
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Results

• Model	including	MY	+	DIM	+	BW	+	Milk	spectra	(33	WL;	BN)	+	
Behavior	(VD)	presented	accurate	and	precise	predictions 195

Conclusions
• ANN	on	reduced	WL	set	(with	BN)	improved	prediction	quality
• Superiority	of	ANN	indicates	potential	nonlinear	relationships	
between	DMI	and	WL

• Superiority	of	models	including	raw	spectra	compared	with	
milk	components	(fat,	protein,	and	lactose)	indicates	that	other	
unknown	milk	compounds	may	be	important

• Validation	of	model	predictions	should	be	carefully	conducted

196
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Machine	Learning
• Introduction,	Big	Data	Analytics
• Artificial	Neural	Networks
• Support	Vector	Machines
• Decision	Trees
• Kernel	regression,	RKHS

197

Statistics	and	Machine	Learning

Experiment 
Station

Pattern	Recognition	TechniquesParametric	Models

Experimental	Design Predictive	Analytics

Deep	
Learning

198
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Data, Data Everywhere

199

Other farm-
recorded data

App

Sensors
Data storage 

and management

Data editing
Data analysis/mining

Public data

1. Real time monitoring:
Animal-level
Farm (or pen)-level

2. Management optimization:
Product quality, production efficiency, 
animal wellbeing, sustainability, etc.

3. Genetic improvement:
Novel traits, better scoring, G x E

200
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The 5 Vs of Big Data

201

The 5 Vs of Big Data
(or more…)

Volume
Velocity
Veracity
Value
Variety

Variability
Validity
Vulnerability
Volatility
Visualization

202
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Supervised and Unsupervised Methods

203

Artificial	Neural	Networks
• Nonlinear	regression	technique	inspired	on	how	the	brain	
works:

204
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Artificial	Neural	Networks
• Example	of	NN	with	single	hidden	layer:
x1 x2 x3 …				xP

y

Activation	function:
(e.g.	sigmoidal)

205

Artificial	Neural	Networks

• P predictors	à H(P	+	1)	+	(H	+	1)	parameters

• Parameters	usually	initialized	to	random	values,	and	then	

specialized	algorithms	(e.g.	back-propagation)	are	used	to	

minimize	the	sum	of	squares	of	residuals

• NN	tend	to	over-fit	à strategies	to	avoid	over-fitting	include	

‘early	stopping’,	and	‘weight	decay’	(regularization	similar	to	

ridge	regression)

Optimization	using:

(predictors	should	be	on	the	same	scale		à xJ
∗
=

MNOMN

PN
)

206
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Artificial	Neural	Networks
• NN	depicted	before	refers	to	a	single-layer	feed-forward	
network	(Perceptron)

• Variations	include	multiple	hidden	layers,	loops	going	both	
directions	between	layers,	Bayesian	approach,	etc.

• Choice	of	NN	architecture	includes	number	of	hidden	units	
per	layer,	activation	function	(linear,	sigmoid,	hyperbolic	
tangent	– Tanh,	Rectified	Linear	Unit	– ReLU,	etc.)

• Model	fitting	strategies:	average	results	of	multiple	NN	with	
different	starting	values,	pre-filter	predictors	with	strong	
collinearity

207

Artificial	Neural	Networks
• Example:	Cross-validated	RMSE	profiles	for	single	hidden	layer	
NN	with	sizes	ranging	between	1	and	13	hidden	units,	and	three	
different	weight	decay	values	(λ	=	0.00,	0.01,	0.10)

Best		model	used	λ	=	0.1	
and	11	hidden	units

208
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Artificial	Neural	Networks
• Response	variable	y (predictand):	single	or	multiple	outputs;	
continuous,	binary,	or	multi-category	variable	(C classes	à C
binary	columns	of	dummy	variables)	

• For	classification,	an	additional	nonlinear	transformation	is	
used	on	the	combination	of	hidden	unites,	for	example	the	
softmax transformation:

where	fDE(x) is	the	model	prediction	of	the	lth class	and	the	ith sample
209

Artificial	Neural	Networks
• Example	of	NN	for	classification:
x1 x2 x3 …				xP

Activation	function:
(e.g.	sigmoidal)

y1 y2 …				yC
210
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Artificial	Neural	
Networks

• Example:	Illustration	of	model	
averaging	effect	with	different	
amounts	of	eight	decay;	models	
included	three	hidden	units	

(Kuhn	and	Johnson,	2016)
211

Artificial	Neural	Networks
• Example:	Effect	of	data	transformation	(spatial	sign	transformation)	
and	model	averaging	on	tuning	parameter	profiles

Area	under	the	ROC	curve	for	a	
model	averaged	network	with	
the	spatial	sign	transformation	

212
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Support	Vector	Machine
• Linear	classification	boundary,	maximum	margin	classifier

Left:	A	data	set	with	completely	separable	classes.	An	infinite	number	of	
linear	class	boundaries	would	produce	zero	errors.	Right:	The	class	
boundary	associated	with	the	linear	maximum	margin	classifier.

support	vectors

margin

213

Support	Vector	Machine

• Let	two	outcome	classes	(A	and	B)	coded	as	y = −1 and	y = +1,	
and	predictors	@A = (xAC + xAD + ⋯+ xAF)G

• D(@):	decision	value;	if	D @ > 0à class	A,	otherwise	class	B

• New	sample:	P → D P = βS + ∑UVCF βUuU
à D P = βS + ∑AVCW yAαA@AGP (written	as	a	function	of	the	data)

Notice:	Due	to	the	dot	product	,	predictors	should	be	
centered	and	scaled,	i.e.	xU∗ =

\]^_\]
`]

)

214
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Support	Vector	Machine
• Completely	Separable	Classes:

D 8 = β; + ∑>?@A y>α>C>D8 ,	with:

Gα> = 0 , for samples not on the margin
α> > 0 , for support vectors
(Support	vector:	black	points	in	the	Figure)

new	sample

(β; = −4.372)

D 8 = −4.372 + 2.4 + 1.72 + 0.79
= 0.583

215

Support	Vector	Machine

• Not	Completely	Separable	Classes:	new	formulation	with	a	cost	
on	the	sum	of	the	training	set	points	that	are	on	the	boundary	or	
on	the	wrong	side	of	the	boundary

• Nonlinear	Classification	Boundaries:	“Kernel	Trick”

• Kernel	Function:

à D D = βG + ∑JKLM yJαJK(PJ, D)

Linear:	K P, D = PTD
Polynomial:	K P, D = (scale PTD + V)WXYZXX

Radial	basis	function:	K P, D = exp(−σ P − D _)
Hyperbolic	tangent:	K P, D = tanh(scale(PTD) + 1)216
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Support	Vector	Machine
• Kernel	Trick:

217

Support	Vector	Machine

• The	choice	of	the	Kernel	function	parameters	and	
the	cost	value	should	be	tuned	to	avoid	over-fitting

• Other	extensions:	multiple	classes,	estimation	of	
class	probabilities,	specialized	Kernels,	etc.

• SVM	originally	developed	for	classification,	later	
extended	to	regression	(support	vector	regression)

218
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Support	Vector	Machine

• Support	Vector	Regression

• Common	technique:	ϵ-sensitive	regression	(robust	regression)

SSE:		∑?@A
B Cε?

E = ∑?@A
B (y? − Cy?)

E (sensitive	to	outliers)

Huber	function:		∑CLMN(y? − Cy?)
E+∑CLPN |y? − Cy?|

Support	Vector	Regression:		∑CLPN |y? − Cy?| (only	look	at	outliers…)

219

Support	Vector	Machine

The	relationship	between	a	model	
residual	and	its	contribution	to	the	
regression	line	for	several	techniques.

For	the	Huber	approach,	a	threshold	
of	2	was	used	while	for	the	support	
vector	machine,	a	value	of	ϵ =	1	was	
used.

(Kuhn	and	Johnson,	2016)
220
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Support	Vector	Machine
The	robustness	qualities	of	SVM	models
Top:	a	small	simulated	data	set	with	a	single	large	outlier	is	
used	to	show	the	difference	between	an	ordinary	regression	
line	(red)	and	the	linear	SVM	model	(blue)

Middle:	the	SVM	residuals	versus	the	predicted	values	(the	
upper	end	of	the	y-axis	scale	was	reduced	to	make	the	plot	
more	readable).	The	plot	symbols	indicate	the	support	vectors	
(shown	as	grey	colored	circles)	and	the	other	samples	(red	
crosses).	The	horizontal	lines	are	±ϵ =	0.01

Bottom:	A	simulated	sin	wave	with	several	outliers.	The	red	
line	is	an	ordinary	regression	line	(intercept	and	a	term	for	
sin(x))	and	the	blue	line	is	a	radial	basis	function	SVM	model

221

Decision	Trees
• Tree-based	Models:	consist	of	one	or	more	nested	if-then
statements

Example	of	the	predicted	
values	within	regions	defined	

by	a	tree-based	model

if	A ≥ 1.7 then
if	B ≥ 202.1 then	y = 1.3
else	y = 5.6

else	y = 2.5

A ≥ 1.7 ?
B ≥ 202.1 ?yes

no

yes

no
y = 2.5

y = 5.6

y = 1.3

222
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Decision	Trees
• Basic	Regression/Classification	Trees:	
• Partition	the	data	into	smaller,	more	homogeneous	groups	in	
terms	of	the	response	y,	by	determining:
- the	predictor	to	split	on	and	value	of	the	split
- the	depth	(or	complexity)	of	the	tree
- the	prediction	equation	in	the	terminal	nodes

• There	are	many	algorithms	for	constructing	
regression/classification	trees,	for	example	the	Classification	
and	Regression	Tree	(CART)

223

Decision	Trees

• CART	starts	with	the	entire	data	set	S,	and	finds	the	predictor	

and	split	value	that	partition	the	data	into	two	groups	(S
1
and	

S
2
)	such	that	SSE is	minimized:

• Then,	within	each	sub	set,	the	method	proceeds	with	

additional	partitions

• In	classification,	the	partition	seeks	more	‘pure’	sets,	i.e.	sets	

containing	a	larger	proportion	of	one	class	in	each	node;	

measures	such	as	Gini	index	and	cross	entropy	are	generally	

used;	Gini = p
N
1 − p

N
+ p

Q
1 − p

Q

SSE	= ∑
S∈U

V

(y
S
− Wy

N
)
Q
+ ∑

S∈U
X

(y
S
− Wy

Q
)
Q
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Decision	Trees
• Bagging	(bootstrap	aggregation):

- Generate	m	bootstrap	samples
- Construct	a	tree	model	for	each	bootstrap
- Average	m	prediction	for	any	new	sample

• Drawback	of	bagging:	‘tree	correlation’
• Random	Forests:	similar	approach	to	bagging,	but	trees	
constructed	for	each	bootstrap	sample	use	k	<	P randomly	
selected	of	the	original	predictors

• Boosting: ensemble	of	weak	classifiers,	which	are	trained	by	
increasing	weights	of	incorrectly	classified	samples	at	each	
iteration.	Algorithms	include	AdaBoost,	and	Stochastic	
Gradient	Boosting 225

Data	Streaming	Example:	
Computer	Vision	Systems

226
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Depth	Sensors	(3D	Cameras)

Time	of	Flight
(ToF)

Light	Detection	and	Ranging
(LiDAR)

227

➢ Periodic	measurements:
• Direct	assessment	of	animals	growth
- Assess	intra-group	variability
- Optimal	management	(e.g.	precision	nutrition)

• Prohibitive
- Labor	and	cost
- Animal	welfare	(stress)
- Scale	within	pen:	expensive,	requires	periodically	
cleaning	and	calibration

Real-Time	Monitoring:	Growth	and	
Development	in	Pigs	

228
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• Data	on	655	pigs
• Boars	and	gilts	from	three	
commercial	lines
• Weight	across	different	ages
(Scale	EziWeigh5i,	ste ±1%)
• Pigs	were	not	fasting

Prediction	of	Pig	Weight

Fernandes	AFA,	Dórea JRR,	Fitzgerald	R,	Herring	W	and	Rosa	GJM	(2019)	A	novel	
automated	system	to	acquire	biometric	and	morphological	measurements,	and	
predict	body	weight	of	pigs	via	3D	computer	vision.	J.	Anim.	Sci. 97:	496–508.	

229

• Sensor	positioned	on	top	of	the	area	
before	to	the	scale

• Pigs	were	contained	under	the	
sensor	for	a	variable	amount	time

• Kinect	V2	sensor	(Microsoft)

Data	Acquisition

• BW	and	multiple	images	acquired	from	each	animal

230
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A.	Image	acquisition

Example	of	a	Computer	Vision	System	Framework

C.	Image	ProcessingB.	Image	Analysis D.	Data	Analysis
- Thresholding
- Binarization

- Image	segmentation
- Feature	extraction

- Data	normalization
- Model	fitting
- Validation	and	tuning
- Prediction

231

Segmentation	Algorithm

232
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• Feature	extraction:
• Body	measurements:

Area	
Volume
Length
Width
Height

• Shape	descriptors:
Eccentricity
Back	curvature	linear	coefficient
Polar	Fourier	Descriptors

Features	Extracted

(MATLAB,	Release	2017b)
233

• Variables	from	a	random	image
• Image	with	max	area
• Image	with	max	length
• Image	with	max	volume
• Average	across	all	images
• Median	across	all	images
• Truncated	average	removing	20%	of	data	for	each	animal
• Truncated	average	of	the	subset	on	3rd quartile

Image	Selection

234
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Linear	model:
• For	all	the	reduced	datasets	10	permutations	on	
a	5-fold	cross-validation	were	used	to	assess	the	
quality	of	the	predictions
• Stepwise	regression	with	AIC	as	model	selection	
criterion	(stepAIC function	of	MASS	package)	
• R	environment

Statistical	Analyses

235

Histogram	of	live	body	weight	(kg)	distribution	for	nursery	
and	off-test	pigs	with	relative	means	and	variation

N

Results

236
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5.5

5.0

4.5

4.0

3.5

• Analysis	including	nursery	data

A)	Box	plots	for	Mean	absolute	error	(MAE)	as	percentage	of	the	
average	body	weight.	B)	Coefficient	of	determination	(R2)	of	the	
different	models	on	the	test	data	across	the	cross	validation.	

Results

237

5.5

5.0

4.5

4.0

3.5

3.0

• Analysis	without	nursery	data

A)	Box	plots	for	Mean	absolute	error	(MAE)	as	percentage	of	the	
average	body	weight.	B)	Coefficient	of	determination	(R2)	of	the	
different	models	on	the	test	data	across	the	cross	validation.	

Results
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• Body	weight
• Body	composition	traits:
Muscle	depth	(MD)	and	back	fat	(BF)

Improving	Prediction	of	Pig	Body	

Weight	and	Body	Composition

Fernandes	AFA,	Dórea JRR,	Valente	BD,	Fitzgerald	R,	Herring	W	and	Rosa	GJM	(2020)	

Comparison	of	data	analytics	strategies	in	computer	vision	systems	to	predict	pig	

body	composition	traits	from	3D	images.	Journal	of	Animal	Science 98:skaa250.	

Aloka SSD	500

239

Prediction	models:
• Multiple	Linear	Regression	(LM)
• Partial	Least	Squares	(PLS)
• Elastic	Network	Regression	(EN)
• Artificial	Neural	Network	(ANN)
• Deep	Learning	Image	Encoder	(DL)

Model	comparison:
• 5-fold	CV:	mean	absolute	error	(MAE),	mean	absolute	
scaled	error	(MASE),	root	mean	square	error	(RMSE),	R2

Data	Mining	Approaches

Input: Image	features

Input: Raw	3D	images

(MASS,	pls,	glmnet,	H2O)

NN	architectures:	1-3	hidden	layers,	5-100	nodes/layer,	activation	functions:	
rectified	linear	unit	(ReLU)	or	max-out,	dropout	rate	20-80%,	loss	functions:	
Gaussian	and	Huber,	L1	and	L2	regularizations,	learning	rate	and	time	decay	

240
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Deep	Learning	Image	Encoder	

113.5 kg

input compressed output

encoder decoder

241

• TensorFlow	machine	learning	library;	Python	(version	3.7)	
• Network	architectures:	input	layer,	encoder	blocks,	fully	connected	
layers,	and	output	layer

• Input	layer:	3D	image	and	camera	focal	length
• Encoder	blocks:	convolutional	block,	followed	by	a	max-pooling	
layer	with	a	2	by	2	window	and	a	strider	of	the	same	size

• Convolutional	blocks:	convolutional	layer	with	a	3	by	3	window,	
batch	normalization	layer,	and	ReLU activation	function	layer

• Fully	connected	layers	had	L1	and	L2	regularization,	dropout	rate	of	
50%,	and	leaky	ReLU activation	function

• DL	architectures	varied	on	size	of	the	input	image,	number	of	
encoder	blocks,	and	number	of	nodes	on	the	fully	connected	layers

Deep	Learning	Image	Encoder	

242
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Predictive	Performance	of	each	
Model	for	each	Trait

243

Kernel	Regression

244
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Kernel	Regression

• Let:		y0 = E y0|40 + ε0 = g 40 + ε0,	where	y0 (i = 1,2, … , n) is	the	

response	variable,	40 = x0D, x0E, … , x0F
G
is	the	vector	of	

explanatory	variables	(covariates),	and	ε0~
00L(0, σE) is	the	model	

residual

• Conditional	expectation	function:	g 40 =
D

F(4)
∫ yp 4, y dy

• Consider	a	nonparametric	kernel	estimator	of	the	p-dimensional	

density	of	the	covariates	(Silverman	1986):

Yp(4) =
D

Z[\
∑0^D
Z K

4_`4

[

where	K
4_`4

[
is	the	kernel	function,	h is	a	smoothing	parameter,	

and	x is	the	“focal	point”	value 245

Kernel	Regression

• ,p(/) is	a	p-dimensional	density	function	so	that	the	kernel	

function	must	be	positive	and	∫
?@

@
,p(/)d/ = 1,	so	that:

E

FGH
∑JKE
F ∫

?@

@
K

/L?/

G
d/ = 1 → ∫

?@

@ E

GH
K

/L?/

G
d/ = 1

• Similarly	(and	assuming	a	single	h),	p /, y can	be	estimated	as:

,p(/, y) =
E

FGH
∑JKE
F K

OL?O

G
K

/L?/

G

where	K
OL?O

G
is	also	a	kernel	function.

• So	that	∫ y,p /, y dy =
E

FGH
∑JKE
F E

G
∫ yK

OL?O

G
dy K

/L?/

G
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Kernel	Regression

• Let:		z = (y − y4)/h,	so	that	dy = hdz and	

;

<
∫ yK

>?@>

<
dy = y4 ∫K z dz + hE[z]

• Assuming	a	proper	K z (i.e.,∫ K z dz = 1)	and	E z =

∫ zK z dz = 0,	then	∫ yLp M, y dy =
;

N<O
∑4Q;
N y4K

M?@M

<

• Hence TE y4|M4 = Lg M4 =
;

VW(M)
∫ yLp M, y dy = ∑4Q;

N w4(M)y4

where	w4 M =
Y

M?ZM

[

∑?\]
^ Y

M?ZM

[

are	weights	that	depend	on	the	choice	

of	kernel	function	and	smoothing	parameter	h
247

Kernel	Regression
• Example:	Gaussian	kernel	

K 5675
8 = :

(<=)?/A exp − :
<

5675
8

C 5675
8

X:	regression	point
●:	data	point

Note:	h controls	the	decay	rate;	smaller	h implies	more	abruptly	
decrease	of	wO 5 ,	i.e.	more	‘local’	regression

• Specific	case:	Additive	regression	model	(Hastie	&	Tibshirani 1990)	
g 5O = ∑^_:

` E yO|xO^ = ∑^_:
` g^ xO^ (no	interactions)

248
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Kernel	Regression
• Example:	Regression	of	log-income	and	age	of	205	people

Scatter	plot	and	smooths	for	earning	power	data	using	kernel	N(0,	1).	
Window	widths	are	represented	by	curves:	solid	curves,	h	=	3;	dotted	

curves,	h	=	1;	dashed	curves,	h	=	9 (Chu	and	Marron	1991) 249

Reproducing	Kernel	Hilbert	Spaces
• Statistical	models	based	on	reproducing	kernel	Hilbert	spaces	(RKHS)	
have	been	useful	for	regression	(e.g.,	Wahba	1990),	classification	(e.g.,	
Vapnik 1998),	and	smoothing	in	highly	dimensional	problems.

• Examples of application can be found in spatial
statistics (e.g. ‘Kriging’; Cressie, 1993), scatter-
plot smoothing (e.g. smoothing splines;
Wahba, 1990), genetics and genomics (Gianola
et al. 2008; de los Campos et al. 2009), etc.

• RKHS regression is connected with many other
statistical approaches, such as additive models,
splines, and mixed models.

250



126

Reproducing	Kernel	Hilbert	Spaces

• Reproducing	kernel	Hilbert	space	
(RKHS)	is	a	Hilbert	space	of	
functions	in	which	point	evaluation	
is	a	continuous	linear	functional.	

• A	Hilbert	space	is	a	vector	space	
equipped	with	an	inner	product	
which	defines	a	distance	function	for	
which	it	is	a	complete	metric	space.

David	Hilbert
(1862-1943)

251

RKHS	Regression

• Regression	model:		y2 = E y2|62 + ε2 = g 62 + ε2
• Estimation	of	g 62 :

1) Least	Squares	or	Maximum	Likelihood:	Eg 62 =
arg min

F
l(H, 6) with	g(.) assumed	known	and	expressed	

in	a	parametric	form,	and	l(H, 6) is	the	loss	function,	a	
measure	of	goodness-of-fit

2) Regularized	regression:	Eg 62 = arg min
F

l H, 6 + λJ(g) ,	

where	J(g) is	a	penalty	on	model	complexity
252
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RKHS	Regression

3) RKHS	regression:	assumes	g belongs	to	a	Hilbert	space	or	

real-valued	functions,	denote	as	g ∈ H,	and	uses	the	square	

of	the	norms	of	g as	penalty,	i.e.	J g = g D
E ,	where	 . D

denotes	the	norm	in	Hilbert	space	H

Gg HI = arg min
J∈K

l L, H + λ g D
E

• RKHS	model	specification;	choice	of:

Loss	function	l L, H

Hilbert	space	H

Smoothing	parameter	λ
253

RKHS	Model	Specification
• Standard	choices	of	loss	function:	negative	log-likelihood	and	
residual	sum	of	squares

• If	the	response	is	a	binary	outcome,	
coded	as	A ∈ −1, 1 ,	and	the	loss	
function	is	taken	to	be	a	hinge	function	
l m = max(0, 1 − ym),	the	problem	
becomes	the	standard	support	vector	
machine

• Smoothing	parameter	J can	be	chosen	using	cross-validation,	
generalized	cross-validation,	or	Bayesian	methods

254
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RKHS	Methods	and	Mixed	Models
• The	duality	between	Hilbert	spaces	of	functions	and	positive-
definite	functions	is	convenient,	as	it	is	easier	to	define	a	positive	
definite	function	on	x than	to	define	H explicitly

• Let	K be	an	n×n positive	definite	matrix	with	elements	K AB, AC ,	
and	l D, A = D − g(A) J D − g(A) be	a	residual	sum	of	squares

• Under	this	setting,	the	optimization	problem	can	be	expressed	as	
(Kimeldorf and	Wahba	1970):

min
T

D − UV J D − UV + λVJUV

where	c	is	an	n×1 vector	of	unknown	constants.	
255

RKHS	Methods	and	Mixed	Models
• Solution:	 454 + λ4 9̂ = 45;

• Given	that	4 = 45 and	4>? exists,	premultiplication by	4>? yields:

4 + λG 9̂ = ;

• The	estimated	conditional	expectation	function	is:

JK L = 49̂ = 4 4 + λG >M; = N;

where	N = 4 4 + λG >M is	a	projection	matrix.

• Therefore,	JK L is	a	weighted	sum	of	the	observations:

JK L = ∑TU?
V wWTyT

where	the	weights	wWT are	the	entries	of	W. 256
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Bayesian	Interpretation

• The	solution	to	the	optimization	problem

min
5

6 − 89 : 6 − 89 + λ9:89

• can	be	interpreted	as	a	condition	(given	λ)	posterior	mean	and	
mode	of	a	Bayesian	model	with	gaussian	likelihood	and	a	normal	

prior	for	the	”regression	coefficients”	c

• Let	6 = 89 + I,	where	I = (εL, εM, … , εO )
:~N(R, SσU

M) is	the	vector	

of	model	residuals,	and	K is	the	kernel	matrix,	viewed	as	an	

incidence	matrix	for	c

à 6~N(89, SσU
M)

257

Bayesian	Interpretation

• Prior:	0~N(4, 678σ:;)

• If		and	σ?; are	σ:; known,	the	density	of	the	conditional	posterior	
distribution	of	c is:

p(0|6, σ?
;, σ:

;, H) ∝ exp −
8

;LM
N H − 60 O H − 60 exp −

8

;LP
N 0

O60

• This	density	is	known	to	be	multivariate	normal	with	mean	
(mode)	equal	to	E 0|6, σ?;, σ:;, H = 6 + λY 7ZH,	where	λ = σ?;/σ:;

258
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Mixed	Model

• Consider	y centered:	1 = 3 + 5,	with	
3
5
~N

;
;
,
<σ>

? ;

; @σA
?

• BLUP:	F3 = @ + λ<HI HJ1,	where	λ = σA
?/σ>

?

Bayesian	RKHS	Model

• 1 = <Q + 5,	with	
Q
5
~N

;
;
,
<HJσ>

? ;

; @σA
?

• Consider	the	following	change	of	variable	3 = <Q

• E 3 = <E Q = ; and	Var 3 = Var <Q = < <HIσ>
? <X = <σ>

?,

and,	as	u is	a	linear	function	of	c,	it	follows	that	3~N(;, <σ>
?)

❤

259

Building	Kernels
• Selecting	a	kernel	is	the	most	critical	stage	in	applying	kernel-
based	algorithms

• Prior	knowledge	about	a	problem	may	be	useful	but	it	is	not	
always	enough	for	choosing	a	specific	kernel

• Kernels	can	be	selected	using	model	comparison	techniques,	
e.g.	cross-validation	or	Bayesian	methods

• In	addition,	bandwidth	parameters	control	how	fast	the	
(co)variance	drops	as	points	get	further	apart	in	input	space.	
For	example,	in	a	Gaussian	kernel,	h	>	0 may	be	used	to	
control	how	local	the	regression	is

260
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Building	Kernels

• Another	interesting	way	of	generating	flexible	kernels	is	to	
exploit	polynomial	kernels	with	positive	constants	

< = σ?
@<? + σ@

@<@ + σ?@
@ <?<@

• From	a	Bayesian	perspective,	this	can	be	viewed	as	a	model	
D = E? + E@ + E?@ + F,	with	prior	

p(E? + E@ + E?@) = N(E?|K, σ?
@<?)N(E@|K, σ@

@<@)N(E?@|K, σ?@
@ <? ⋕ <@)

• This	is	equivalent	to	model:	D = E? + E@ + E?@ + F,	with	prior

p(E) = N(E|K, σ?
@<? + σ@

@<@ + σ?@
@ <? ⋕ <@)

261

Implementation	of	RKHS	Regression
• The	fact	that	any	RKHS	regression	can	be	parameterized	
as	a	mixed	model	with	specific	(co)variance	matrices	
implies	that	available	packages	for	mixed	model	
implementation	can	be	used	to	perform	RKHS	regressions

• This	choice	is	especially	efficient	in	situations	when	there	
is	an	efficient	algorithm	for	computing	K−1 directly	from	
T,	e.g.	in	animal	and	plant	breeding	where	the	inverse	of	
the	relationship	matrix	can	be	built	directly	from	
pedigree	information

262
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Example	with	Genomic	Prediction

• Animal	Model:	7 = 9: + <= + >,	with	=~N(C, DσFG) and	>~N(C, IσJG),	
where	D is	a	known	matrix,	constructed	in	three	different	ways:

1. Pedigree	information:	K =	A ,	the	additive	genetic	(or	numerator)	
relationship	matrix,	having	elements	given	by	2	x	coefficient	of	
coancestry between	individuals

2. Genomic	information	(GBLUP):	K =	G ,	the	genomic	relationship	
matrix,	given	by	Z = [2∑p](1 − p])]`abbc

3. Both	pedigree	and	genomic	information	(ssGBLUP):	D = e ,	

where	e`f = g`f +
C C
C Z`f − gGG

`f
263

Example	with	Genomic	Prediction

• Matrices	A,	G and	H used	to	estimate	additive	genetic	effects
• More	general	kernels	should	allow	capturing	non-additive	
effects	as	well

• Here,	two	non-linear	kernels	were	use	in	the	context	of	
ssGBLUP:	the	averaged	Gaussian	kernel	(AK)	and	the	arc-
cosine	deep	kernel	(DK)

Momen,	M.,	Kranis,	A.,	Rosa,	G.	J.	M.	and	Muir,	P.	(2022)	Predictive	assessment	of	
single-step	BLUP	with	linear	and	non-linear	similarity	RKHS	kernels:	A	case	
study	in	chickens.	J	Anim Breed	Genet 139:	247-258.
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Material	and	Methods
• Body	weight	(BW)	and	hen-housing	production	(HHP),	
recorded	on	5,500	genotyped	broiler	chickens

• Training	(TRN)	and	testing	(TST)	sets	with	different	
genotyping	rates	(20,	40,	60	and	80%	of	birds)	in	3	
selective	genotyping	scenarios	(genotyping	of	the	
youngest	individuals	in	the	pedigree,	random	
genotyping,	and	genotyping	based	on	parent	average)

• Model	with	H matrix	described	as:

265

Material	and	Methods

• Non-linear	Kernels:

- Gaussian	kernel	(GK):

where	 89 − 89;
< is	the	Euclidean	distance	between	the	vectors	

of	SNP	markers	of	individuals	i and	i’ normalized	to (0,	1)

- Arc-cosine	kernel	(Deep	kernel,	DK):	similarity	between	two	

genotyped	individuals	given	by	the	angle	between	their	vectors	of	

SNP	markers

Recursive	algorithm:

266
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Boxplot of the Fisher's z-
transformed predictive rank 

correlations using H matrices
based on the genomic 
relationship matrix (G), 

averaged Gaussian kernel (AK) 
and deep kernel (DK) for body 
weight (Top Panel) and hen-
house production (Bottom 

Panel) in the single-step 
GBLUP model (ssGBLUP).

267

• Prediction	accuracy	was	influenced	by	the	type	of	kernel	when	
a	large	proportion	of	birds	was	genotyped

• An	advantage	of	non-linear	kernels	(AK	and	DK)	was	more	
apparent	when	60	and	80%	of	birds	had	been	genotyped.

• The	results	indicated	that	AK	and	DK	are	more	effective	than	G	
when	a	large	proportion	of	the	target	population	is	genotyped.	

• ssGBLUP with	AK	or	DK	models	should	perform	better	than	G	
for	traits	with	important	non-additive	genetic	effects

Results	and	Discussion

268
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Correlation	and	Causation
• Association	vs.	Causation
• Confounding	and	Selection	Bias
• Randomization
• Analysis	of	Observational	Data

- Propensity	Score
- Instrumental	Variable
- Bayesian	Networks

• Causal	Assumptions
269

Prediction	vs.	Causal	Inference

270
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“I	wish	they	didn’t	turn	
on	that	seatbelt	sign	so	
much!	Every	time	they	
do,	it	gets	bumpy.”

Causal	Inference

271

Association	vs.	Causation

yz

yz

yz yz

x

“z	is	associated	with	y”

“y	causes	z”“z	causes	y” “x	causes	z	&	y”
272
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Confounders

?

273

Selection	Bias

Sports	(S)
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	(A
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rA,S =	0
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Confounding	and	Selection	Bias

yz

x

Confounding
(x	is	a	common	cause	for	z	and	y)

yz

Selection	Bias
(z	and	y	observed	only	
for	a	subset	of	x	values)

x

275

Lady	tasting	tea

Randomized	Trials

Sir	R.	A.	Fisher

276
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Randomized	Experiments

yz

x

Causal	relationship	
between	variables

yz

x

Effect	of	randomization	
applied	to	variable	z

ð Testing	the	effect	of	z	on	y.

277

Observational	Studies

ð Lack	of	randomization	due	to	
legal,	ethical,	or	logistics	reasons

ð Potential	bias	and	confounding	
effects

ð Example:	
Parenthood	and	life	expectancy

278
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Analysis	of	Observational	Data
ð Regression	techniques	with	carefully	chosen	covariables
ð Propensity	score	techniques
ð Instrumental	variables
ð DAGs

279

Propensity	Score
• Propensity	Score	(PS):	Conditional	probability	of	assignment	
to	a	particular	category	of	the	causal	variable	given	the	values	
of	the	confounder	set	(Rosenbaum	and	Rubin	1983)

• Three	different	techniques:	Matched	Samples,	StratiEication,	
and	Regression

cancer

PSi = Pr(smoke | xi ) = pi
logit(pi ) =β0 +β1x1i +…+βmxmi

confounders
280
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� Potential	Confounders:
Age	(parity)
Genetics
Year,	Season,	etc.

Example
Inferring	the	Causal	Effect	of	Number	of	Lambs	Born	

on	Milk	Yield	in	Dairy	Sheep

• Association	between	litter	size	(proliKicacy)	and	milk	yield	(MY)	has	been	
shown	in	several	species:	mice	(Skjfervold 1976	and	Knight	et	al.	1986),	
rats	(Yagil et	al.	1976),	pigs	(Auldist 1998),	goats	(Heyden et	al.	1978)

281

Estimated	causal	effect	of	prolificacy	on	MY	using	
Propensity	Scores	with	Matched	Samples,	as	well	as	using	
marginal	and	partial	regression	of	prolificacy	on	MY.

Ferreira	VC,	Valente	BD,	Thomas	DL	and	Rosa	GJM.	Causal	effect	
of	prolificacy	on	milk	yield	in	dairy	sheep	using	propensity	
score.	Journal	of	Animal	Science 100:	8443–8450,	2017.

(L/lamb)
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Instrumental	Variable	(IV)

cancer
Z X

Yδ β

β̂OLS = (X
TX)−1XTY

β̂IV = (Z
TX)−1ZTY

283

Bayesian	Networks
• Graphic	representation	of	a	probability	distribution	over	a	set	
of	variables	à DAG

• Nodes	(vertices)	and	arrows
• Parent,	Child,	and	Spouse
• Joint	distribution	as	the	product	of	local	
distributions

• Markov	Blanket	(MB):	a	MB	of	a	node	is	
defined	as	the	set	containing	its	parent(s),	
child(ren)	and	spouse(s);	Conditionally	on	its	
MB,	a	node	is	independent	from	all	other	nodes

Pr(A,B,C,D,E) = Pr(E |C,D)Pr(C | A,B)Pr(D)Pr(B)Pr(A)
284
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Inference	Steps
① Structure	Learning

� Score-based	algorithms
� Constraint-based	algorithms

② Parameter	Estimation
eXβΛyy ++=

Λ =
0 0 0
0 0 0
λ31 λ32 0

#

$

%
%
%

&

'

(
(
(y2

y1

y3

Maximum	Likelihood	
or	Bayesian	Inference
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Structure	Learning

Ø Constraint-based	algorithms
� IC,	PC	– Spirtes et	al.	(2001)

� Grow-Shrink	(GS)	– Margaritis (2003)

� Incremental	Association	Markov	Blanket	(IAMB)	– Tsamardinos et	al.	(2003)

� Max-Min	Parents	&	Children	(MMPC)

Ø Score-based	algorithms
� Hill	Climbing	(HC)	– Bouckaert (1995)

� Tabu Search	(Tabu)

Ø Hybrid	structure	learning	algorithms
� Sparse	Candidate	(SC)	– Friedman	et	al	(1999)

� Max-Min	Hill	Climbing	(MMHC)	– Tsamardinos et	al.	(2006)
286
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Constraint-based	algorithms
Ø Series	of	conditional	independence	tests	(parametric,	
semiparametric	and	permutation)
� Linear	correlation	or	Fisher's	Z	(continuous	data;	multivariate	
normal	distribution)

� Pearson's	X2 or	mutual	information	(categorical	data;	
multinomial	distribution)

� Jonckheere-Terpstra	(ordinal	data)

Score-based	algorithms
ØDifferent	score	functions

� Akaike	Information	Criterion	(AIC)
� Bayesian	Information	Criterion	(BIC)
� multinomial	log-likelihood,	Dirichlet	posterior	density	(BDe)	
or	K2	score	(categorical	data) 287

Felipe VPS, Silva MA, Valente BD and Rosa GJM. Using multiple regression, Bayesian
networks and artificial neural networks for prediction of total egg production in
European quails based on earlier expressed phenotypes. Poultry Sci. 94:772-780, 2015.

• Two	strains	(L1	and	L2)	of	European	Quail
• 31	traits	(female	quails):
- Body	weight
-Weight	gain
- Age	at	first	egg
- Egg	production
- Egg	quality	traits

Example:	Egg	Production	in	Poultry

288
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Material	&	Methods

• Sample	sizes	(training	and	test	sets):
- Line	1 (90	+	90),	Line	2 (102	+	103)

• Traits:
- Weekly	body	weight	(birth	to	35	d,	BW1	to	BW6)
- Weight	gain	(0-35	and	21-35	d,	WG1	and	WG2)
- Age	at	first	egg	(AFE)
- Egg	quality	traits,	four	time	points:	125,	170,	215,	260	d
Egg	Weight	– Ew,	Yolk	Weight	– Y,	Egg	Shell	Weight	– ES	

Egg	White	Weight	– EW,	Egg	Specific	Gravity	- DENS

- Partial	Egg	Production	(35-80d,	EP1)	and	
Total	egg	production	(35-260d,	TEP)

289

•Multiple	regression	analysis
- Step-wise	OLS

• Bayesian	Networks
- MB	detection

• Artificial	Neural	Networks
- Machine	learning	tool	to	map	
relationship	between	inputs	and	output

Material	&	Methods

290
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• Structure	Learning	(L1):	Given	EP1,	TEP	is	independent	
from	the	other	traits

291

Structure	for	L1

Structure	for	L2

292
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• Arrows:	Causal	interpretation;	
consequences	of	intervention
• Direct,	indirect	and	total	effects
• Additional	assumptions:	Markov	
condition,	faithfullness and	causal	
sufficiency	assumptions

Causal	Inference

293

Causal	Inference
• Prediction	of	the	result	of	an	intervention (gene	knockout,	
management	decision,	treatment	effect)

• Estimation	of	causal	effects:

If	the	causal	DAG	is	known	and	the	distribution	is	
multivariate	Gaussian,	then	the	causal	effect	(β)	of	X	on	Y	
can	be	estimated	from	the	regression	:

E[Y]	=	m	+	βX	+	pa(X)

i.e.,	DAG	determines	adjustment	variables			
[backdoor	adjustment;	Pearl	(1993)]

294
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Disease

Fever Feed	consumption
after	disease

Environment	
temperature	
and	humidity

Hygiene
Feed	consumption	
prior	to	disease

Feed	quality

Water	
consumption

Feed	storage

Fictitious	Causal	Network
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Disease

① Feed	storage

② Feed	quality

③ Feed	Consumption	
prior	to	disease	

④ Hygiene

⑤ Water	consumption

⑥ Fever

⑦ Feed	consumption	
after	disease

⑧ Environment	temp.	
and	humidity

Multiple	Regression	Analysis

y	=	b0 +	b1x1 +	...	+	bpxp +	e

✗
✗
✓
✓
✓
✓
✓
✓
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Disease

Fever Feed	consumption
after	disease

Environment	
temperature	
and	humidity

Hygiene
Feed	consumption	
prior	to	disease

Feed	quality

Water	
consumption

Feed	storage

Fictitious	Causal	Network
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Causal	Assumptions

The assumption of causal suf3iciency is equivalent to the assumption of
independence of exogenous variables. This assumption can be relaxed in structure
learning — some search algorithms proposed by Spirtes et al. (1993) allow for
discovery of models that are not causally suf3icient. In this case, the algorithm
suggests possible common causal predecessors of any pair of the measured variables.

• Markov	condition:	given	its	parents,	a	node	is	independent	of	
all	its	non-descendants.

• Faithfulness:	The	joint	distribution	has	all	of	the	conditional	
independence	relations	implied	by	the	causal	Markov	
property,	and	only	those	conditional	independence	relations.

• Causal	sufficiency:	No	pair	of	variables	has	a	latent	
(unobserved)	common	cause.

298
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Markov	Condition

Pr(A,B,C,D,E) = Pr(E |C,D)Pr(C | A,B)Pr(D)Pr(B)Pr(A)
299

Faithfullness

A

B

C

+6

+2

-3
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Causal	Sufficiency

A B C

Confounder	
(non-observed)

301

Causal	Assumptions
“No	causes	in,	no	causes	out.”	(Nancy	Cartwright,	1994)

Prior	causal	knowledge	must	be	supplied	to	be	able	to	learn	new	
causal	information.	

Sub A B C D E F G

1

2

…

n

Assumptions
(or experiments, 

intervention)

Discovery
Data
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Experimental ObservationalValidation:

Observational Experimental
Hypothesis	
generator:

Experimental ObservationalIntegrated:

Experimental	and	Observational	Studies

303

Rosa,	G.	J.	M.	and	Valente	B.	D.	Inferring	causal	effects	from	
observational	data	in	livestock.	Journal	of	Animal	Science	
91:	553-564,	2013.

Bello,	N.	M.,	Ferreira,	V.	C.,	Gianola,	D.	and	Rosa,	G.	J.	M.	
Conceptual	framework	for	investigating	causal	effects	
from	observational	data	in	livestock.	Journal	of	Animal	
Science	96:	4045-4062,	2018.

Inferring	Causal	Effects	from	
Observational	Data	in	Agriculture

304
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Feature Controlled	Experiment Observational	Study

Randomization Yes	
(hopefully!)

No
(partially)

Sample size Smaller Larger
#	Factors	involved Fewer Multiple;	interactions

Cost	of data	collection Higher Lower;	quite	often	
already	available

Causal	inference Gold	standard Complex,	
but	feasible	(?)

Direct	applicability	of	results	
to	commercial	settings Not	always Yes

Prediction	of	field	outcomes Complex Gold	standard

Most	important	issues
Imperfect	randomization,
missing	data,	narrower	
conclusion/extrapolation

Confounding,	
selection	bias,

data	size/complexity

Experimental	and	Observational	Studies
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Additional	Topics
• Some	Other	Machine	Learning	Methods

- Recurrent	Neural	Network
- Convolutional	Neural	Network
- Graph	Neural	Networks

• Strategies	for	Implementing	Big	Data	Analysis

306
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Recurrent	Neural	Network
• RNNs	is	a	class	of	ANNs	that	gained	popularity	for	time	
series	analysis.	RNNs	process	sequences	of	data	by	
internally	looping	through	each	element	of	the	sequence,	
instead	of	processing	the	whole	input	in	a	single	step.

• Recurrent	layers	are	characterized	by	their	step	
function,	which	in	the	previous	simple	example	was	an	
activation	function	applied	to	a	weighted	sum	of	input	
and	state	features.	Two	other	popular	types	of	recurrent	
layers	are	Long	Short-Term	Memory	(LSTM)	layers	and	
Gated	Recurrent	Units	(GRUs).

307

Convolutional	Neural	Network
• CNN	is	a	class	of	artificial	neural	network,	commonly	
applied	to	analyze	images.

• CNNs	take	advantage	of	the	hierarchical	pattern	in	data	
and	assemble	patterns	of	increasing	complexity	using	
smaller	and	simpler	patterns	embossed	in	their	filters.
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Graph	Neural	Network	
• GNN	is	a	type	of	Neural	Network	which	directly	operates	
on	the	Graph	structure.	

309

Strategies	for	Implementing	Big	Data	Analysis
• Parallel	Computing
(easily	implemented	for	comparison	of	multiple	models,	
or	different	architecture	of	ANN,	Cross-validation	runs,	
multiple	MCMC,	etc.)
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Strategies	for	Implementing	Big	Data	Analysis
• Divide	and	Recombine	(Delta-Rho)

311
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