Regression and Classification Applied to Precision Agriculture

Conference on Applied Statistics in Agriculture and Natural Resources

May 16-19, 2022

Regression and Classification Applied to Precision Agriculture

Contents:

	C3 510
Data Science Applied to Slid	es 11-22
Agriculture Principles of Slid	es 23-43
Regression Classification and Slid	es 44-65
Clustering Multiple Regression Slid	es 66-114
Topics Multilevel and Hierarchical Slid	es 115-146
Models Regularization Approaches Slid	es 147-167
Model Selection Slid	es 168-196
Machine Learning Approaches Slid	es 197-244
Kernel Regression Slie	es 245-268
Causal Inference Slie	es 269-305
Concluding Remarks Slie	es 306-311

Conference on Applied Statistics in Agriculture and Natural Resources May 16-19, 2022

Wisdom of Crowds

- In 1906 Galton attended a farmers' fair in Plymouth where he was intrigued by an ox weight guessing contest. Around 800 people entered the contest and wrote their guesses on tickets. The person who guessed closest to the butchered weight of the ox won a prize.
- After the contest Galton took the tickets and ran a statistical analysis on them. He discovered that the average guess of all the entrants was remarkably close (under by only 1 lb !) to the actual weight of the butchered ox (1,198 lbs).
- The collective guess was not only better than the actual winner of the contest but also better than guesses made by cattle experts.

Distribution particula					
	r living ox	timates of th , made by 78	e dressed 7 differen	weight of a t persons.	Diagram, from the tabular values.
		Cent	iles	1.000	To the second se
Degrees of the length of Array of -100"	Estimates in Ibs.	Observed deviates from 1207 lbs.	Normal p.e =37	 Excess of Observed over Normal 	0* 10* 20* 30* 40* 50* 60* 70* 80* 90* 108
5	1074	- 133	- 90	+43+28	L'E
15	1126	- 81	-57	+ 24	
20	1148	- 50	- 46	+13	
1/1 25	1162	- 45	-37	+ 8	
30	1174	- 33	-29	+ 4	*
35	1151	- 26	- 21	÷ 5	
40	1188	- 19	-14	+ 5	The continuous line is the normal curve with p.e. $\equiv 37$.
45	1197	- 10	- 7	4 3	The lines connecting them show the differences between the observe
m so	1207	0	0	0	and the normal.
55	1214	+ 7	- 7	0	
60	1219	+ 12 >	+14	- 2	
65	1225	+ 18	+21	- 3	-
70	1230	+ 23	+ 29	- 0	Actual weight, 1 198 lbs
92 75	1230	+ 29	+ 37	- 8	
80	1243	- 36	+ 40	- 10	
85	1254	+ 47	1-57	- 10	→ Guesses average: 1,197 lbs
	1267	+ 52	+70	- 18	
90	140/	1 1 2 2 2 2			

Remarks

- Democratic principle: "one vote one value"
- Vox Populi : middlemost estimate
- Model averaging
- Ensemble (Boosting) methods, combination of weak predictors
- Very useful in regression and classification
- Resulting combined model is better than any of the models alone

Regression/Classification Topics

- Least squares and beyond
- Checking model assumptions
- Non-Gaussian models
- Heteroscedasticity
- Variable transformation
- Model (variable) selection
- Linear and non-linear models
- Multi-collinearity
- Dimension reduction techniques
- Shrinkage estimation
- Parametric and non-parametric
- Measurement error

- Measurement error
- Missing data imputation
- Multivariate models
- Mixed effects (multilevel)
- Power and sample size calculation
- Bayesian methods
- Monte Carlo methods
- Prediction, interpretation, causality
- Robust regression
- Kernel regression
- Machine learning approaches
- Software etc., etc., etc.

Variables	Description	Unit	Levels	Variables	Description	Unit	Level
Turrubico	Devenpriori	Unit	Levelo	variables	Description	onic	Level
DIM	Days in milk	d	_	305ME1	305 d mature herd equivalent	kg	-
DOPN	Days open	d	_		for lactation 1		
DDRY	Days dry	d		FCM2	Fat corrected milk for	kg	
CINT	Calving interval	d	-		lactation 2		
TOTM	Total milk production for current lactation	kg	-	305ME2	305 d mature herd equivalent for lactation 2	kg	1
TOTP	Total protein production for	kg	-	LACT	Lactation number	-	7
	current lactation			EASE	Calving ease score		2
TOTF	Total fat production for	kg	-	MAST	Lifetime Mastitis	-	3
	current lactation			Culling	Culling reason	_	7
PTOTM	Total milk production for	kg	-	Month	Month of sale	-	12
	previous lactation	1.0		Year	Year of sale	-	4
PTOTP	Total protein production for	kg		Farm	Farm of origin	-	.4
	previous lactation	0		Weight	Live weight	kg	
PTOTF	Total fat production for previous lactation	kg	-	BP	Price paid per 100 lb (45.34 kg) of live weight	\$	-
305M	Dairy Comp internal projected 305-d milk production	kg	-	price ratio	BP divided by the national average cow price (\$/cwt) for	\$	
305ME	Dairy Comp projected 305ME	kg			the respective month and		
ME305	305ME	kg	_		year of sale		
PDIM	Days in milk for previous	d	-	Carcasswt	Carcass weight	kg	-
	lactation			Dressing	Dressing percentage	%	-
PDOPN	Days open for previous	d	_	Grade	Paid grade for carcass	-	9
	lactation			Maturity	Animal maturity		2
FCM1	Fat corrected milk for	kø		Trim	Score of carcass trimming loss	-	2
	lactation 1			and the second s	weight		

Table 4 Pearson	correlation coeffici	In the time where						
Table 4. Tealson	Price ratio	Weight	Carca	asswt Dre	ssing	Maturity	Grade	Trim
BP	0.91***	0.377***	0.5	36*** 0.	45***	-0.313***	0.608***	-0.258**
Price ratio		0.407***	0.5	71*** 0.	72***	-0.397***	0.662***	-0.275**
Weight			0.8	76*** 0.	068	0.224***	0.186**	-0.121*
Carcasswt				0.	34***	0.069	0.465***	-0.254**
Dressing						-0.277***	0.661***	-0.306**
Maturity							-0.453***	0.141*
Grade								-0.24***
		Table 5. Car	ionical coeffic	ients, loadings, co	relation, and	aggregate		0.21
		Table 5. Car redundancy ratio and car	onical coeffic coefficient fo cass merit ch	ients, loadings, co r the first canonic aracteristics of 223	relation, and al variates of cull dairy cow	aggregate the price rs ¹		
		Table 5. Car redundancy ratio and car Variables ²	ionical coeffic coefficient fo ccass merit ch Loadings	ients, loadings, co r the first canonic aracterístics of 223 Cross-loadings	relation, and al variates of cull dairy cow Correlation	aggregate the price rs ¹ ARC		
		Table 5. Car redundancy ratio and car Variables ²	conical coeffic coefficient fo cass merit ch Loadings	ients, loadings, co r the first canonic aracterístics of 223 Cross-loadings	relation, and al variates of cull dairy cow Correlation	aggregate the price rs ¹ ARC		10121
		Table 5. Car redundancy ratio and car Variables ² ⁷ Price ratio θ	tonical coeffic coefficient fo cass merit ch Loadings	ients, loadings, co r the first canonic aracterístics of 223 Cross-loadings	relation, and al variates of cull dairy cow Correlation 0.761	aggregate the price rs ¹ ARC 0.216		
		Table 5. Car redundancy ratio and car Variables ² η Price ratio θ Livewt	onical coefficient for coefficient for cass merit ch Loadings 0.393	ients, loadings, co r the first canonic aracteristics of 223 Cross-loadings 0.299	relation, and al variates of cull dairy cow Correlation 0.761	ARC 0.216 0.579		
		Table 5. Car redundancy ratio and car Variables ² η Price ratio θ Livewt Carcasswt	onical coeffic coefficient fo ccass merit ch Loadings 0.393 0.680	ients, loadings, co r the first canonic aracteristics of 223 Cross-loadings 0.299 0.517	relation, and al variates of cull dairy cow Correlation 0.761	aggregate the price rs ³ ARC 0.216 0.579		
		Table 5. Car redundancy ratio and car Variables ² η Price ratio θ Livewt Carcasswt Dressing	onical coeffic coefficient fo ccass merit ch Loadings 0.393 0.680 0.662	ients, loadings, co r the first canonic aracteristics of 223 Cross-loadings 0.299 0.517 0.503	relation, and al variates of cull dairy cow Correlation 0.761	ARC 0.216 0.579		
		Table 5. Car redundancy ratio and car Variables ² η Price ratio θ Livewt Carcasswt Dressing Grade	0.393 0.680 0.662 0.851	ients, loadings, co r the first canonic aracteristics of 223 Cross-loadings 0.299 0.517 0.503 0.647	relation, and al variates of cull dairy cow Correlation 0.761	ARC 0.216 0.579		
		Table 5. Car redundancy ratio and car Variables ² η Price ratio θ Livewt Carcasswt Dressing Grade Maturity	0.393 0.680 0.681 0.580	ients, loadings, co r the first canonic aracteristics of 223 Cross-loadings 0.299 0.517 0.503 0.647 0.441	relation, and al variates of cull dairy cow Correlation 0.761	aggregate the price rs ³ ARC 0.216 0.579		

Variable Transformation (cont'ed) • Log-log: $y = \beta_0 \times x^{\beta_1} \times \varepsilon$ $\log(y) = \log(\beta_0) + \beta_1 \log(x) + \log(\varepsilon)$, with y > 0 and x > 0 $y^* = \beta_0^* + \beta_1 x^* + \varepsilon^*$ • Others: square-root, inverse, etc. • Box-Cox $y = \begin{cases} (y^{\lambda} - 1)/\lambda & \text{if } \lambda \neq 0 \\ \log(y) & \text{if } \lambda = 0 \end{cases}$

Wilmink's Model

• Four-parameter model (Wilmink 1987): $y_t = a + b \times exp(-k \times t) + c \times t + e$ where y_t is the milk production in time t, and e is the error term. The four parameters represent the persistency coefficient (parameter c) that explains the variation in the long-term milk component (parameter a), the short-term milk component (parameter b), and the speed of adaptation (parameter k).

Cluster Analysis

- Cluster analysis (or clustering) is the task of grouping a set of objects in such a way that objects in the same group (cluster) are more similar (in some sense) to each other than to those in other groups (clusters)
- It is an unsupervised exploratory data mining technique used in many fields, including pattern recognition, image analysis, etc.
- Many algorithms available, such as K-means, mixture models, hierarchical clustering

Hierarchical Clustering

- Hierarchical clustering involves creating clusters that have a predetermined ordering from top to bottom. There are two types of hierarchical clustering: Divisive and Agglomerative.
- Divisive or top-down method: all of the observations are initially assigned to a single cluster and then partition the cluster to two least similar clusters. Finally, we proceed recursively on each cluster until there is one cluster for each observation.
- Agglomerative or bottom-up method: each observation is assigned to its own cluster. Based on a similarity measure (e.g., distance) the two most similar clusters are merged. The process is repeated until there is only a single cluster left.

Classification

- Discriminant or Classification techniques seek to categorize samples into groups based on the predictor characteristics
- Examples are: assigning a given email to the "spam" or "nonspam" class, and assigning a diagnosis to a given patient based on observed characteristics of the patient (sex, blood pressure, presence or absence of certain symptoms, etc.).
- Classification is a supervised approach of pattern recognition.
- Linear models: logistic regression, linear discriminant analysis. Non-Linear models: Neural networks, support vector machines, K-nearest neighbors, Naïve Bayes, Classification trees, etc.

Example: Investigating Factors that Affect Beef Production and Quality in Brazil Objectives

- **1.** Forecast beef cattle production and quality, using a large scale data set integrated from different sectors of industry in Brazil
- 2. Compare prediction quality of alternative methods: Generalized Linear Model, Random Forest, and Neural Network

Methods	
Models: Linear Regression (LR) Generalized Linear Regression (GLR) Random Forest (RF) Multilayer Perceptron Neural Networks (NN)	
Predictors: Animal Category (female, steer, bull), Technician Consulting, Nutrition Product, Corn Price, Sales price, Soil, Climate, Month, and Age at Slather (only for CW and FD)	
Predictive ability: 10-fold Cross-Validation; training with 542,935 (2014/2015) and testing with 285,357 observations (2016)	
Continuous: Root Mean Square Error (RMSEp), Coefficient of Determination (R ²), and Mean Absolute Error (MAE) Categorical: Accuracy and the Cohen's kappa coefficient (Kappa)	
Software: R package "caret" (Kuhn, 2019) Center for High Throughput Computing (CHTC)	61

			Outcome vari	able
1. 1	0.00		Categorica	1
Model	Measure	AS	FD	CQ
Generalized	Accuracy	0.2867 (±0.0011)	0.4576 (±0.00	0.5867 (±0.0019
linear regression	Kappa	0.0666 (±0.0015)	0.0476 (±0.00	0.0862 (±0.0037
Random	Accuracy	0.2871 (±0.0019)	0.4494 (±0.00	020) 0.5390 (±0.0016
Forest	Kappa	0.0759 (±0.0026)	0.0523 (±0.00	0.0930 (±0.0032
Multilayer	Accuracy	0.2536 (±0.0028)	0.3742 (±0.00	019) 0.4640 (±0.1999
perceptron neural networks	Kappa	0.0237 (±0.0034)	0.0501 (±0.01	60) 0.0670 (±0.0017
			Continuou	5
		CW (centered and	d scaled)	CW (original scale)
Linear regression	RMSEp	0.6765 (±0.00	027)	41.2697 kg
	R ²	0.6017 (±0.00	017)	0.6017
	MAE	0.5097 (±0.00	017)	31.0941 kg
Random Forest	RMSEp	0.6626 (±0.00)25)	40.4217 kg
	R ²	0.5920 (±0.00	(24)	0.5920
	MAE	0.5018 (±0.00)13)	30.6122 kg
Multilayer	RMSEp	0.8073 (±0.00	030)	49.2491 kg
perceptron neural	\mathbb{R}^2	0.4657 (±0.00	037)	0.4657
networks	MAE	0.5905 (±0.00	(45)	36.0233 kg

Regression Modeling Goals and Applications

- Prediction: no specific interest on interpretation of regression coefficients (black-box and nonparametric models are useful as well), contribution of each variable on prediction accuracy, explores association (not causal relationship) between target variables and predictors
- Interpretation of model parameter estimates: parametric model backed-up by theory related to domain of application, e.g. infinitesimal model in quantitative genetics, non-linear curves (digestibility, fluid dynamics, growth, lactation, etc.)
- Causal inference: hypothesis testing in the context of controlled randomized trials and also observational data (issues of confounding and selection bias)

Multiple Linear Regression Predictor (explanatory) variables Response variable (Y) X₁ X_2 Xp . . . X₁₁ ... X₁₂ X_{1p} **У**1 • • • y₂ x₂₁ X₂₂ X_{2p} ÷ : ÷ ÷ • • • x_{n2} Уn x_{n1} X_{np}

• Response variable described as a linear function of multiple predictors: $y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \varepsilon_i$

Multiple Linear Regression

- Model: $y_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \varepsilon_i$
- Predictors (explanatory variables) can be continuous or categorical (regression and ANOVA)
- Error terms (ϵ_i) assumed independent from each other, with mean 0 and variance σ_{ϵ}^2 , i.e. $\epsilon_i \sim^{iid}(0, \sigma_{\epsilon}^2)$
- Some additional assumptions related to the distribution of ϵ_i will be considered later, such as normality

67
Multiple Linear Regression						
• General linear n	nodel: $\mathbf{y} =$	Xβ +	3			
where $\mathbf{y} = [y_1, y_2,, y_n]^T$ is the vector of observations on the response variable, $\boldsymbol{\beta} = [\beta_0, \beta_1,, \beta_p]^T$ is the vector of location parameters (regression coefficients), X is a known incidence /design (n×k) matrix linking each observation y_j to the vector $\boldsymbol{\beta}$, and $\boldsymbol{\epsilon}$ is a vector of error terms, assumed $\boldsymbol{\epsilon} \sim (0, I\sigma_{\epsilon}^2)$						
• Notice: $\mathbf{X} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}$	$\begin{array}{cccc} x_{11} & x_{12} \\ x_{21} & x_{22} \\ \vdots & \vdots \\ x_{n1} & x_{n2} \end{array}$	···· ··· ···	$\begin{bmatrix} x_{1p} \\ x_{2p} \\ \vdots \\ x_{np} \end{bmatrix}$, $k = p + 1$ a	and $\varepsilon = y - X\beta$		

Least Squares

- Seek estimate $\widehat{\beta}$ that minimizes the residual sum of squares (RSS): RSS = $\sum_{i=1}^{n} [y_i - \hat{y}_i]^2$, where $\hat{y}_i = \hat{\beta}_0 + \sum_{j=1}^{p} \hat{\beta}_j x_{ij}$
- Matrix notation: RSS = $(\mathbf{y} \mathbf{X}\widehat{\boldsymbol{\beta}})^{\mathrm{T}}(\mathbf{y} \mathbf{X}\widehat{\boldsymbol{\beta}})$ $= \mathbf{y}^{\mathrm{T}}\mathbf{y} - 2\widehat{\boldsymbol{\beta}}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{y} + \widehat{\boldsymbol{\beta}}^{\mathrm{T}}\mathbf{X}^{\mathrm{T}}\mathbf{X}\widehat{\boldsymbol{\beta}}$
- Partial derivatives: $\frac{\partial RSS}{\partial \beta} = -2\mathbf{X}^{T}\mathbf{y} + 2\mathbf{X}^{T}\mathbf{X}\widehat{\boldsymbol{\beta}}$
- Equating to zero: $\mathbf{X}^{\mathrm{T}}\mathbf{X}\widehat{\boldsymbol{\beta}} = \mathbf{X}^{\mathrm{T}}\mathbf{y} \rightarrow \widehat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$ (LS estimate)
- Proof of minimum: $\frac{\partial^2 RSS}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}^T} = 2\mathbf{X}^T \mathbf{X}$ (Hessian matrix; positive definite if $rank(\mathbf{X}) = \mathbf{k}$)

69

Least Squares
• The errors
$$\boldsymbol{\epsilon}$$
 come for a distribution with mean 0 and variance $\sigma_{\boldsymbol{\epsilon}}^2$,
which can be estimated from the residuals as:
 $s^2 = \frac{1}{n-k} \sum_{i=1}^n (y_i - \hat{y}_i)^2 = \frac{1}{n-k} (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})^T (\boldsymbol{y} - \boldsymbol{X} \hat{\boldsymbol{\beta}})$
• Coefficient of determination: fraction of the variation in the response
variable that is predictable from the explanatory variable(s):
 $R^2 = \frac{\sum_{i=1}^n (\hat{y}_i - \overline{y}_i)^2}{\sum_{i=1}^n (y_i - \overline{y}_i)^2} = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2}{\sum_{i=1}^n (y_i - \overline{y}_i)^2}$
• Adjusted R²: $R^2_{adj} = 1 - \frac{\sum_{i=1}^n (y_i - \hat{y}_i)^2/(n-k)}{\sum_{i=1}^n (y_i - \overline{y}_i)^2/(n-1)} = 1 - \frac{(n-1)}{(n-k)} \sum_{i=1}^n (y_i - \overline{y}_i)^2}$

Testing Regression Coefficients

- Model: $y_i = E[y_i | \mathbf{x}_i] + \epsilon_i = \beta_0 + \sum_{j=1}^p \beta_j x_{ij} + \epsilon_i$
- If normality is assumed for the error terms, i.e. $\epsilon_i \sim^{iid} (0, \sigma_{\epsilon}^2)$, then: $\widehat{\beta} \sim N(\beta, (X^T X)^{-1} \sigma_{\epsilon}^2)$ and $(n - k) s^2 \sim \sigma^2 \chi^2_{(n-k)}$
- For any regression coefficient:

$$H_0: \beta_j = 0 \rightarrow z_j = \frac{\beta_j}{s\sqrt{\nu_j}} \sim t_{n-k}$$

where $\nu_j = j^{th}$ diagonal element of $(\boldsymbol{X}^T\boldsymbol{X})^{-1}$

Gauss-Markov Theorem

- Linear combination of the parameters: $\boldsymbol{\theta} = \mathbf{k}^{T} \boldsymbol{\beta}$, where $\boldsymbol{\beta} = [\beta_{0}, \beta_{1}, ..., \beta_{p}]^{T}$
- LS estimate: $\widehat{\mathbf{\theta}} = \mathbf{k}^{\mathrm{T}} \widehat{\mathbf{\beta}} = \mathbf{k}^{\mathrm{T}} (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}$
- $E[\widehat{\boldsymbol{\theta}}] = \mathbf{k}^{\mathrm{T}} (\mathbf{X}^{\mathrm{T}} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{X} \boldsymbol{\beta} = \mathbf{k}^{\mathrm{T}} \boldsymbol{\beta}$
- Consider any linear combination $\widetilde{\Theta} = c^T y$ such that $E[\widetilde{\Theta}] = k^T \beta$, i.e. unbiased
- It can be shown that $\operatorname{Var}[\mathbf{k}^{\mathrm{T}}\widehat{\boldsymbol{\beta}}] \leq \operatorname{Var}[\mathbf{c}^{\mathrm{T}}\mathbf{y}]$
- Mean squared error: $MSE = E[\tilde{\theta} \theta] = Var[\tilde{\theta}] + (E[\tilde{\theta}] \theta)^2$

More on the LS Methodology

- The estimator $\widehat{\beta}_{OLS} = \widehat{\beta} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ is called ordinary least squares (OLS) estimator, and it is indicated only in situations with homoscedastic and uncorrelated residuals.
- If the residual variance is heterogeneous (i.e., $Var(\epsilon_i) = \sigma_i^2 = w_i \sigma^2$), the residual variance matrix can be expressed as $Var(\epsilon) = W\sigma^2$, where W is a diagonal matrix with the elements w_j , a better estimator of β is given by $\hat{\beta}_{WLS} = (X^T W^{-1} X)^{-1} X^T W^{-1} y$, which is generally referred to as weighted least squares (WLS) estimator.
- Furthermore, in situations with a general residual variance-covariance matrix V, including correlated residuals, a generalized least squares (GLS) estimator $\hat{\beta}_{GLS} = (X^T V^{-1} X)^{-1} X^T V^{-1} y$ is obtained by minimizing the generalized sum of squares, given by GSS = $(y X\hat{\beta})^T V^{-1}(y X\hat{\beta})$.

Maximum Likelihood

- Likelihood Function: any function of the model parameters that is proportional to the density function of the data.
- Hence, to use a likelihood-based approach for estimating model parameters, some extra assumptions must be made regarding the distribution of the data.
- In the case of the linear model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, if the residuals are assumed normally distributed with mean vector zero and variance-covariance matrix **V**, i.e. $\boldsymbol{\epsilon} \sim \text{MVN}(\mathbf{0}, \mathbf{V})$, the response vector **y** is also normally distributed, with expectation $\mathbf{E}[\mathbf{y}] = \mathbf{X}\boldsymbol{\beta}$ and variance $\text{Var}[\mathbf{y}] = \mathbf{V}$.

Maximum Likelihood Estimation

• The distribution of **y** has a density function given by:

$$p(\mathbf{y}|\boldsymbol{\beta}, \mathbf{V}) = (2\pi)^{-n/2} |\mathbf{V}|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}} \mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right\}$$

so that the likelihood and the log-likelihood functions can be expressed respectively as:

$$L(\boldsymbol{\beta}, \mathbf{V}) \propto |\mathbf{V}|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}} \mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right\}$$

and

$$l(\boldsymbol{\beta}, \mathbf{V}) = \log[L(\boldsymbol{\beta}, \mathbf{V})] \propto -\frac{1}{2}|\mathbf{V}| - \frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\mathrm{T}}\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

Maximum Likelihood Estimation • Assuming V known, the likelihood equations for β are given by taking the first derivatives of $l(\beta, V)$ with respect to β and equating it to zero: $\frac{\partial l(\beta, V)}{\partial \beta} \equiv \frac{\partial}{\partial \beta} (y - X\beta)^T V^{-1} (y - X\beta) = 0$ from which the following system of equations is obtained: $(X^T V^{-1} X)^{-1} \hat{\beta} = X^T V^{-1} y$ • The maximum likelihood estimator (MLE) for β is given then by: MLE(β) = $\hat{\beta} = (X^T V^{-1} X)^{-1} X^T V^{-1} y$

Maximum Likelihood Estimation

 If the inverse of X^TV⁻¹X does not exist, a generalized inverse (X^TV⁻¹X)⁻ can be used to obtain a solution for the system of likelihood equations:

$$\boldsymbol{\beta}^0 = (\boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{X})^- \boldsymbol{X}^T \boldsymbol{V}^{-1} \boldsymbol{y}$$

• Note: Under normality the MLE coincides with the GLS estimator discussed previously. Similarly, in situations in which the matrix **V** is diagonal, or when **V** can be represented as $\mathbf{V} = \mathbf{I}\sigma^2$, the MLE coincides with the WLS and the OLS estimators, respectively.

79

Properties of Maximum Likelihood Estimators

• Consistency: $E[\hat{\theta}] \xrightarrow{n \to \infty} \theta$

• Invariance: $\hat{\theta} = MLE(\theta) \rightarrow g(\hat{\theta}) = MLE[g(\theta)]$

• Asymptotic normality and efficiency:

$$\sqrt{n}(\hat{\theta} - \theta) \xrightarrow{d} N(0, I(\theta)^{-1})$$

where $I(\theta)$ is the Fisher information matrix (Crámer-Rao lower bound: $Var(\tilde{\theta}) \ge I(\theta)^{-1}$)

• Relation to Bayesian inference: A maximum likelihood estimator coincides with the posterior mode given a uniform prior distribution on the parameters

Multicollinearity

- Multicollinearity (also collinearity) is a linear association between predictors variables, i.e. the predictor variables are correlated.
- Consequence: regression coefficient estimates may change erratically in response to small changes in the model or the data.
- Multicollinearity however does not reduce the predictive power or reliability of the model.
- Under extreme multicollinearity, parameters may be not estimable.
- Detection: Large changes in the estimates when a predictor variable is added or deleted; variance inflation factor (VIF)
- Modelling alternatives: Variable Selection, Dimension Reduction, Shrinkage Estimation

Building a Regression Model for Prediction

- Descriptive analysis; one-variable-at-a-time models, pairwise relationships (scatter plots and correlations)
- Prior knowledge (application domain expertise) to get a starting point, i.e. variables to include in the model
- Try adding more variables, for example using results from descriptive analysis
- Pruning of variables based on results (coefficients sign and p-values)
- Try interactions, especially between inputs with large effects
- Some trial & error, there is not a universal recipe

High-Dimensional Model for Prediction

- Exhaustive search generally impractical
- Search algorithms (simulated annealing, genetic algorithms)
- Alternative model comparison criteria (AIC, BIC, etc.)
- Model building strategies will depend on sample size, number of input variables, and other models characteristics (random effects, covariance structure search, non-linear terms, etc.)
- Some dimension reduction techniques, variable selection, and shrinkage estimation will be discussed later

85

Logistic Regression

- Linear (simple or multiple) regression is used to model continuous outcomes while logistic regression deals with binary (yes or no) outcomes
- $y_i = 0$ or $y_i = 1 \rightarrow p_i = \operatorname{Prob}(y_i = 1)$
- In the logistic model, the log-odds (the logarithm of the odds) is a linear combination of the predictor variables:

$$\log\left(\frac{p_i}{1-p_i}\right) = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_p x_{ip}$$

Logistic Regression

- $Prob(y_i = 1) = logit^{-1}(\eta_i)$, where $\eta_i = \mathbf{x}_i^T \boldsymbol{\beta}$ is the linear predictor
- The function $logit^{-1}(w) = \frac{e^w}{1+e^w}$ transforms continuous values to the range (0,1)
- $\operatorname{Prob}(y_i = 1) = p_i$, $\operatorname{logit}(p_i) = \eta_i = \mathbf{x}_i^T \mathbf{\beta} = \beta_0 + \sum_{j=1}^p \beta_j x_{ij}$
- Odds ratio: odds: $\frac{p}{1+p}$, ratio of two odds: $\frac{p_1/(1-p_1)}{p_2/(1-p_2)}$

$$\log\left(\frac{\operatorname{Prob}(y_i=1|x_i)}{\operatorname{Prob}(y_i=0|x_i)}\right) = \beta_0 + \sum_{j=1}^p \beta_j x_{ij}$$

87

- GLM can actually model outcomes (response variables) generated from any distribution from the exponential family, which includes the normal, binomial, Poisson and gamma distributions, among others
- The GLM consists of three elements:
 - **1**. Probability distribution from the exponential family
 - **2**. Linear predictor $\eta = X\beta$
 - **3.** Link function g such that $E(Y) = \mu = g^{-1}(\eta)$

The Exponential Family of Distributions

• Exponential family: set of probability distributions whose probability density (or mass) function can be expressed as:

 $p(y|\theta) = h(y)exp[\eta(\theta) \cdot T(y) - A(\theta)]$

where h(y), $\eta(\theta)$, T(y) and $A(\theta)$ are known functions.

• Exponential families include: Bernoulli, beta, binomial (with fixed number of trials), categorical, chi-squared, Dirichlet, exponential, gamma, geometric, inverse Wishart, multinomial (with fixed number of trials), negative binomial (with fixed number of failures), normal, Poisson, Wishart, among others.

Generalized Linear Models Common distributions and canonical link functions: 				
Distribution	Link name	Link function , $X\beta = g(\mu)$	Mean function , $\mu = X\beta$	
Normal	Identity	$X\beta = \mu$	$\mu = X\beta$	
Exponential Gamma	Negative inverse	$X\beta = -\mu^{-1}$	$\mu = -(X\beta)^{-1}$	
Inverse Gamma	Inverse squared	$X\beta = \mu^{-2}$	$\mu = (X\beta)^{-1/2}$	
Poisson	Log	$X\beta = \log(\mu)$	$\mu = \exp(X\beta)$	
Bernoulli, Binomial Categorical, Multinomial	Logit	$X\beta = \log\left(\frac{\mu}{1-\mu}\right)$	$\mu = \frac{\exp(X\beta)}{1 + \exp(X\beta)}$	
	L	1	95	

Overdispersion

- Example with Poisson: $y_i = Poisson(\mu_i)$, where $\mu_i = exp(X_i\beta)$
- $E[y_i] = Var[y_i] = \mu_i = exp(X_i\beta)$
- Exposure input: $y_i = Poisson(h_i\mu_i)$, where $\mu_i = exp(X_i\beta)$ and $log(h_i)$ is called offset; $E[y_i] = Var[y_i] = h_i\mu_i$
- Z-score: $z_i = \frac{y_i \hat{y}_i}{sd(\hat{y}_i)} = \frac{y_i h_i \hat{\mu}_i}{\sqrt{h_i \hat{\mu}_i}} \approx N(0,1)$, where $\hat{\mu}_i = \exp(X_i \hat{\beta})$
- Estimated overdispersion: $\frac{1}{n-k}\sum_{i=1}^{n} z_i^2$, as $\sum_{i=1}^{n} z_i^2 \sim \chi_{n-k}^2$

Pig Production Data Analytics

- Data from 2013 to 2016
- More than 100 variables:
 - Performance: Average daily gain, feed conversion, mortality, final weight, initial weight, days on feed, etc.
 - Economics: Profit, income, expenses, feed cost, genetic sales, etc.
 - Management: Number of empty days, vaccinations, etc.
 - Facilities: Type of feeder, type of drinker, construction age, supervisor, manager, etc.

Factors Associated with Total Transport Losses

- Dead on arrival (DOA)
- Downer or slower hogs
 - Direct economic losses for producers
 - Animal welfare and wellbeing concern

Passafaro TL, Van de Stroet D, Bello NM, Williams NH and Rosa GJM (2019) Generalized additive mixed model on the analysis of total transport losses of market-weight pigs. *Journal of Animal Science* 97: 2025-2034.

 Integration of movement and weather data Market-weight pigs July of 2014 to December of 2015 Data editing Missing information Truck companies with less than 20 shipments Shipments with <100 or >210 pigs 	Material and Methods					
 Data editing Missing information Truck companies with less than 20 shipments Shipments with <100 or >210 pigs 						
 Farm - quarter of year combination with <5 records 						
 Final data 26,819 shipments 420 farms 2 processing plants 4,567,514 market-weight hogs 	104					

Variables	Description	Number of levels	Variable type	Comments
Total losses, **	DOA plus slower pigs		Response	
Truck company	The transportation company	78	Explanatory/random	
Site and year	Concatenation of farm and year	797	Explanatory/random	
Group type	Finish or wean to finish	2	Explanatory/fixed	
Abattoir	Meat plant of destination	2	Explanatory/fixed	
Season	Fall. spring; summer, and winter		Explanatory/fixed	
Driver	Owner or employee	2	Explanatory/fixed	
Number of pigs	Number of pigs in the shipment			
Average body weight	Measured in lbs	~	Explanatory/fixed	
Travel distance	Measured in km		Explanatory/fixed	gmapdistance (Mglo & Zarrok, 2010)
Wind speed	Menaured in mps	1 ar	Explanatory/fixed	10
Precipitation	Measured in mm		Explanatory/fixed	
THI		-	Explanatory/fixed	(N(1)AA, 10.78) I = T -10.55-(0.0055xRH0]x[T-14.5]

Descriptive statistics for transport losses and continuous explanatory variables.

Variable	Mean	SD	Minimum	Maximum
DOA, %	0.19	0.45	0.00	7.69
DOWN, %	0.57	0.85	0.00	12.80
Total losses, %	0.76	1.05	0.00	14.02
Number of pigs per shipment	170.3	8.4	100.00	201.00
Average body weight, lbs	276.6	12.7	230.6	319.8
Travel distance, km	136.6	63.4	35.6	396.5
Wind speed, mps	4.2	1.8	0.5	11.0
Precipitation, mm	2.3	5.9	0.00	58.1
THI	9.7	9.6	-16.5	26.3

DOA = Dead on arrival; DOWN = Losses due to downer hogs; THI = Temperature humidity index

106

Results

 Table 3. Parameter estimates and approximate significance level of smoothing functions on total transport

 losses of market-weight pigs using a generalized additive mixed model

1	Estimates	Odds ratios	Confidence interval (odds ratios)		
Parameters			Lower limit	Upper limit	P-value
Intercept	-4.945	0.007	0.006	0.008	< 0.0001
Abattoir: B	-0.323	0.720	0.719	0.722	< 0.0001
Driver: Owner	-0.142	0.868	0.866	0.870	< 0.0001
Smoothing functions			EDF ¹	Ref. DF ²	P-value
Distance travelled			3.2862	9	0.0034
THI			5.0547	9	< 0.0001
Wind speed			0.0004	9	0.9998
Precipitation			1.0021	9	0.8837
Average market weight	t × abattoir A		4.9742	9	< 0.0001
Average market weight	t × abattoir B		5.0547	9	< 0.0001
Wind speed × precipit	ation		1.5295	16	0.0209

EDF = effective degree of freedom; Ref. DF = reference number of degrees of freedom.

Data from Multiple Feedlots

- Suppose data on top-view body area (x) and carcass weight (y) are obtained on cattle (j = 1,2, ..., n_i) from multiple feedlots (i = 1,2, ..., k)
- Proposed model: $y_{ij} = \mu + \beta x_{ij} + e_{ij}$
- Notice: a model that ignores group effects (feedlot effect in this case) will tend to understate the prediction error because of group-to-group variability

$\begin{array}{l} \mbox{Multilevel (Hierarchical) Regression} \\ \mbox{Model with farm effects (i.e. farm-specific intercepts) as well as the interaction between farm and the covariable x (i.e. farm-specific slopes): y = farm + farm × x + error \\ \mbox{Equivalently: } y_{ij} = f_i + \beta_i \, x_{ij} + e_{ij} \\ \mbox{Assuming farm effect as fixed and } e_{ij} \sim N(0, \sigma_e^2): \\ \hline E[y_{ij}] = f_i + \beta_i \, x_{ij} \ \mbox{and } Var[y_{ij}] = \sigma_e^2 \\ \mbox{Predictions:} \\ \hline Future animal on surveyed feedlot: } \tilde{y}_{i0} = \hat{f}_i + \hat{\beta}_i \, x_{i0}, Var(\tilde{y}_{i0}) = \hat{\sigma}_{\tilde{y}}^2 \\ \hline Future animal on future feedlot: } \tilde{y}_{00} = wild guess, Var(\tilde{y}_{00}) = \infty \end{array}$

$$\begin{split} & \text{Multilevel (Hierarchical) Regression} \\ \bullet \text{ Model: } y_{ij} = (\alpha + a_i) + (\beta + b_i) x_{ij} + e_{ij} \\ & \text{with } a_i \sim N(0, \sigma_a^2), b_i \sim N(0, \sigma_b^2) \text{ and } \text{Cov}(a_i, b_i) = \sigma_{ab} \\ \bullet \text{ Marginally: } E[y_{ij}] = \alpha + \beta x_{ij} \text{ and } \text{Var}[y_{ij}] = \sigma_a^2 + x_{ij}^2 \sigma_b^2 + 2\sigma_{ab} + \sigma_e^2 \\ \bullet \text{ Conditionally: } E[y_{ij}|a_i, b_i] = (\alpha + a_i) + (\beta + b_i) x_{ij} \text{ and } \text{Var}[y_{ij}|a_i, b_i] = \sigma_e^2 \\ \bullet \text{ Predictions:} \\ & \begin{bmatrix} \text{Future animal on surveyed feedlot:} \\ \tilde{y}_{i0} = (\hat{\alpha} + \hat{a}_i) + (\hat{\beta} + \hat{b}_i) x_{i0}, \text{Var}(\tilde{y}_{i0}) = \widehat{\sigma}_{\tilde{y}}^2 \\ \text{Future animal on future feedlot:} \\ \tilde{y}_{00} = \hat{\alpha} + \hat{\beta} x_{ij}, \text{Var}(\tilde{y}_{00}) \text{ includes (co)variance components} \\ \end{bmatrix}_{122} \end{split}$$

Two-stage Analysis of Longitudinal Data Step 1

 Let y_{ij} represent the observation j (j = 1,2,...,n_i) on individual i (i = 1,2,...,n), and the following quadratic regression of measurements on time (z_{ij}) for each individual:

$$\mathbf{y}_{ij} = \boldsymbol{\beta}_{0i} + \boldsymbol{\beta}_{1i} \mathbf{z}_{ij} + \boldsymbol{\beta}_{2i} \mathbf{z}_{ij}^2 + \boldsymbol{\varepsilon}_{ij}$$

where β_{0i} , β_{1i} and β_{2i} are subject-specific regression parameters, and ϵ_{ij} are residual terms, assumed normally distributed with mean zero and variance σ_{ϵ}^{2}

• In matrix notation such subject-specific regressions can be expressed as: $\mathbf{y}_{i} = \mathbf{Z}_{i} \boldsymbol{\beta}_{i} + \boldsymbol{\varepsilon}_{i} \qquad (1)$ where $\mathbf{y}_{i} = (\mathbf{y}_{i1}, \mathbf{y}_{i2}, \dots, \mathbf{y}_{in_{i}})^{T}$, $\boldsymbol{\beta}_{i} = (\boldsymbol{\beta}_{0i}, \boldsymbol{\beta}_{1i}, \boldsymbol{\beta}_{2i})^{T}$, $\boldsymbol{\varepsilon}_{i} = (\boldsymbol{\varepsilon}_{i1}, \boldsymbol{\varepsilon}_{i2}, \dots, \boldsymbol{\varepsilon}_{in_{i}})^{T} \sim \mathbf{N}(\mathbf{0}, \mathbf{I}\boldsymbol{\sigma}_{\boldsymbol{\varepsilon}}^{2})$ and $\mathbf{Z}_{i} = \begin{bmatrix} 1 & \mathbf{z}_{i1} & \mathbf{z}_{i1}^{2} \\ 1 & \mathbf{z}_{i2} & \mathbf{z}_{i2}^{2} \\ \vdots & \vdots & \vdots \\ 1 & \mathbf{z}_{in_{i}} & \mathbf{z}_{in_{i}}^{2} \end{bmatrix}$

• Under these specifications, the least-squares estimate of β_i is:

$$\hat{\boldsymbol{\beta}}_{i} = (\mathbf{Z}_{i}^{\mathrm{T}}\mathbf{Z}_{i})^{-1}\mathbf{Z}_{i}^{\mathrm{T}}\mathbf{y}_{i}$$

- Note that this is also the maximum likelihood estimate of β_i
- Such estimates can be viewed as summary statistics for the longitudinal data, the same way one could use area under the curve (AUC), or peak (maximum value of y_{ij}), or mean response.

Two-stage Analysis of Longitudinal Data Step 2

- Suppose now we are interested on the effect of some other variables (such as gender, treatment, year, etc.) on the values of β_i
- Such effects could be studied using a model as:

$$\hat{\boldsymbol{\beta}}_{i} = \mathbf{W}_{i}\boldsymbol{\beta} + \mathbf{u}_{i}$$

where $\mathbf{u}_i \sim N(\mathbf{0}, \mathbf{D})$, which is an approximation for the model:

$$\boldsymbol{\beta}_{i} = \mathbf{W}_{i}\boldsymbol{\beta} + \mathbf{u}_{i}$$
 (2)

129

Single-stage Analysis of Longitudinal Data

• The two step-analysis described here can be merged into a single stage approach by substituting (2) in (1):

$$\mathbf{y}_{i} = \mathbf{Z}_{i} [\mathbf{W}_{i} \boldsymbol{\beta} + \mathbf{u}_{i}] + \boldsymbol{\varepsilon}_{i}$$

which can be expressed as:

$$\mathbf{y}_{i} = \mathbf{X}_{i}\boldsymbol{\beta} + \mathbf{Z}_{i}\mathbf{u}_{i} + \boldsymbol{\varepsilon}_{i}$$

where $X_i = Z_i W_i$. By concatenating observations from multiple individuals, we have the following mixed model:

$$y = X\beta + Zu + \varepsilon$$

Mixed Effects Models

- Frequently, linear models contain factors whose levels represent a random sample of a population of all possible factor levels
- Models containing both fixed and random effects are called mixed effects models
- Linear mixed effects models have been widely used in analysis of data where responses are clustered around some random effects, such that there is a natural dependence between observations in the same cluster
- For example, consider repeated measurements taken on each subject in longitudinal data, or observations taken on members of the same family in a genetic study

Linear Mixed Effects Model

• Generally, it is assumed that **u** and **e** are independent from each other, such that:

$$\begin{bmatrix} \mathbf{u} \\ \mathbf{e} \end{bmatrix} \sim MVN \left(\begin{bmatrix} \mathbf{0} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{G} & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma} \end{bmatrix} \right)$$

 Inferences regarding mixed effects models refer to the estimation of fixed effects, the prediction of random effects, and the estimation of variance and covariance components, which are briefly discussed next

Estimation of Fixed Effects

• As **G** and Σ are generally unknown, an estimate of **V** is used instead such that the estimator becomes:

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}} \hat{\mathbf{V}}^{-1} \mathbf{X})^{-1} \mathbf{X}^{\mathrm{T}} \hat{\mathbf{V}}^{-1} \mathbf{y}$$

- The variance-covariance matrix of $\widehat{\beta}$ is now approximated by $(X^T \widehat{V}^{-1} X)^{-1}$
- Note: (X^TV⁻¹X)⁻¹ is biased downwards as a consequence of ignoring the variability introduced by working with estimates of (co)variance components instead of their true (unknown) parameter values

Estimation of Fixed Effects

• Approximated confidence regions and test statistics for estimable functions of the type $\mathbf{K}^{T}\boldsymbol{\beta}$ can be obtained by using the result:

$$\frac{(\mathbf{K}^{\mathrm{T}}\boldsymbol{\beta}^{0})^{\mathrm{T}}(\mathbf{K}^{\mathrm{T}}(\mathbf{X}^{\mathrm{T}}\mathbf{V}^{-1}\mathbf{X})^{-1}\mathbf{K})^{-1}(\mathbf{K}^{\mathrm{T}}\boldsymbol{\beta}^{0})}{\mathrm{rank}(\mathbf{K})} \approx \mathrm{F}_{[\varphi_{\mathrm{N}},\varphi_{\mathrm{D}}]}$$

where $F_{[\phi_N,\phi_D]}$ refers to an F-distribution with $\phi_N = \operatorname{rank}(\mathbf{K})$ degrees of freedom for the numerator, and ϕ_D degrees of freedom for the denominator, which is generally calculated from the data using, for example, the Satterthwaite's approach

Estimation (Prediction) of Random Effects

- In addition to the estimation of fixed effects, very often in genetics interest is also on prediction of random effects.
- In linear (Gaussian) models such predictions are given by the conditional expectation of **u** given the data, i.e. E[**u**|**y**].
- Given the model specifications, the joint distribution of **y** and **u** is:

$$\begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} \sim MVN \left(\begin{bmatrix} \mathbf{X}\boldsymbol{\beta} \\ \mathbf{0} \end{bmatrix}, \begin{bmatrix} \mathbf{V} & \mathbf{Z}\mathbf{G} \\ \mathbf{G}\mathbf{Z}^{\mathrm{T}} & \mathbf{G} \end{bmatrix} \right)$$

Estimation (Prediction) of Random Effects

• From the properties of multivariate normal distribution, we have that:

$$E[\mathbf{u} | \mathbf{y}] = E[\mathbf{u}] + Cov[\mathbf{u}, \mathbf{y}^{T}] Var^{-1}[\mathbf{y}](\mathbf{y} - E[\mathbf{y}])$$
$$= \mathbf{G}\mathbf{Z}^{T}\mathbf{V}^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta}) = \mathbf{G}\mathbf{Z}^{T}(\mathbf{Z}\mathbf{G}\mathbf{Z}^{T} + \boldsymbol{\Sigma})^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

• The fixed effects β are typically replaced by their estimates, so that predictions are made based on the following expression:

$$\hat{\mathbf{u}} = \mathbf{G}\mathbf{Z}^{\mathrm{T}}(\mathbf{Z}\mathbf{G}\mathbf{Z}^{\mathrm{T}} + \boldsymbol{\Sigma})^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

137

BLUE and BLUP

• Using the second part of the MME, we have that: $\mathbf{Z}^{T} \mathbf{\Sigma}^{-1} \mathbf{X} \hat{\mathbf{\beta}} + (\mathbf{Z}^{T} \mathbf{\Sigma}^{-1} \mathbf{Z} + \mathbf{G}^{-1}) \hat{\mathbf{u}} = \mathbf{Z}^{T} \mathbf{\Sigma}^{-1} \mathbf{v}$

so that: $\hat{\mathbf{u}} = (\mathbf{Z}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{Z} + \mathbf{G}^{-1})^{-1} \mathbf{Z}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} (\mathbf{y} - \mathbf{X} \hat{\boldsymbol{\beta}})$

• It can be shown that this expression is equivalent to:

$$\hat{\mathbf{u}} = \mathbf{G}\mathbf{Z}^{\mathrm{T}}(\mathbf{Z}\mathbf{G}\mathbf{Z}^{\mathrm{T}} + \boldsymbol{\Sigma})^{-1}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})$$

and, more importantly, that \widehat{u} is the best linear unbiased predictor (BLUP) of u

Least Squares Regression

- Model assumptions: $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$, with $\mathbf{e} \sim (\mathbf{0}, \mathbf{I}\sigma^2)$, i.e. $e_i^{\text{i.i.d.}} \sim (0, \sigma^2)$
- The least squares estimate of **b** minimizes the residual sum of squares, which is given by: $RSS = \hat{e}^T \hat{e} = (y X\hat{b})^T (y X\hat{b})$
- Taking the derivatives and equating them to zero...

$$\hat{\mathbf{b}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

• Hat matrix (projection matrix): $\hat{\mathbf{y}} = \mathbf{X}\hat{\mathbf{b}} = \mathbf{X}(\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$

Bias vs. Variance

- Let $\hat{\theta}_1$ be an unbiased estimator of θ with variance equal to V, i.e., $E[\hat{\theta}_1] = \theta$ and $Var[\hat{\theta}_1] = V$
- Suppose now an estimator given by $\hat{\theta}_2 = c \times \hat{\theta}_1$, where 0 < c < 1, so that $E[\hat{\theta}_2] = c \times \theta$ (biased estimator) and $Var[\hat{\theta}_2] = c^2 \times V < V$
- Which estimator, $\hat{\theta}_1$ or $\hat{\theta}_2$, is better? ($\hat{\theta}_1$ is unbiased, $\hat{\theta}_2$ has smaller variance...)
- Mean squared error (MSE): $MSE(\hat{\theta}) = E\left[\left(\hat{\theta} \theta\right)^2\right]$ = $Var(\hat{\theta}) + (E[\hat{\theta}] - \theta)^2$

= variance + squared bias

- Multicollinearity: regression coefficient estimates may change erratically in response to small changes in the model or the data
- Under extreme multicollinearity, parameters may be not estimable
- Prediction accuracy: unbiased but large variance
- Modelling alternatives: Some sort of regularization technique

• PC Regression (Cont'ed):

- 2. Form a low-rank approximation of **X** by keeping just the first k < p PCs (the ones associated with the k largest singular values): $\mathbf{X} \approx \mathbf{T}_k \mathbf{P}_k^T$
- 3. Regress **y** on this lower-dimensional feature space using the PCs as the new features: $\mathbf{y} = \mathbf{T}_k \mathbf{c} + \mathbf{\epsilon} \rightarrow \hat{\mathbf{c}} = (\mathbf{T}_k^T \mathbf{T}_k)^{-1} \mathbf{T}_k^T \mathbf{y}$

Notice: The columns of **T** are orthogonal to each other (**T** = **UD**), so $\mathbf{T}_k^T \mathbf{T}_k$ is a diagonal matrix

4. Prediction of future y: $\mathbf{X}_{new} \rightarrow \hat{\mathbf{y}} = \mathbf{X}_{new} \mathbf{P}_k \hat{\mathbf{c}}$ Notice: As $\mathbf{X} = \mathbf{T}_k \mathbf{P}_k^T \rightarrow \mathbf{X} \mathbf{P}_k = \mathbf{T}_k \mathbf{P}_k^T \mathbf{P} = \mathbf{T}_k$

Partial Least Squares:

- PC Regression: $\mathbf{X} = \mathbf{U}\mathbf{D}\mathbf{V}^{T} = \mathbf{T}\mathbf{P}^{T}$; $\mathbf{T} = \mathbf{X}\mathbf{P}$ (columns of T are the PCs)

Note that vectors in **P** are eigenvectors of X^TX ; $X^TX = VDU^TUDV^T = VD^2V^T$

- If columns of **X** are centered on zero, then **X**^T**X** is proportional to the sample covariance matrix
- Thus, the first k PCs maximize the ability to describe the covariance or spread of the data in **X**
- Problem: Rotation and data reduction to explain variation in **X** does not guarantee to yield latent features that are good for predicting **y**
- Solution: Projection of latent variables to maximize the covariance between X and y. For example, for the first latent vector, search for a vector t = Xw that maximizes Cov(Xw, y) subject to w^Tw = 1

Shrinkage Estimation
Complexity
parameter (
$$\lambda > 0$$
)
• Ridge Regression: $\hat{\mathbf{b}}^{ridge} = \arg \min \left\{ (\mathbf{y} - \mathbf{X}\mathbf{b})^{T} (\mathbf{y} - \mathbf{X}\mathbf{b}) + \lambda \sum_{j=1}^{p} b_{j}^{2} \right\}$
Or, equivalently: $\hat{\mathbf{b}}^{ridge} = \arg \min\{(\mathbf{y} - \mathbf{X}\mathbf{b})^{T} (\mathbf{y} - \mathbf{X}\mathbf{b})\}$, subject to $\sum_{j=1}^{p} b_{j}^{2} \le s$
• "squared magnitude" of coefficients added as a penalty term

$$\int_{a}^{b_{0}} = \bar{\mathbf{y}} = \frac{1}{n} \sum_{j=1}^{n} y_{j}$$
After centering y_{i} and x_{i} 's (i.e. $y_{i} - \bar{y}$ and $x_{i} - \bar{x}$)
RSS(λ) = $(\mathbf{y} - \mathbf{X}\mathbf{b})^{T} (\mathbf{y} - \mathbf{X}\mathbf{b}) + \lambda \mathbf{b}^{T} \mathbf{b} \rightarrow \hat{\mathbf{b}}^{ridge} = (\mathbf{X}^{T} \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}_{15}^{T} \mathbf{y}$

Shrinkage Estimation

• LASSO: least absolute shrinkage and selection operator

 $\hat{\mathbf{b}}^{\text{lasso}} = \arg \min\{(\mathbf{y} - \mathbf{X}\mathbf{b})^{\text{T}}(\mathbf{y} - \mathbf{X}\mathbf{b})\}$, subject to $\sum_{j=1}^{p} |b_j| \le t$

→ "*absolute value of magnitude*" of coefficients added as a penalty term

- Advantages: Lasso shrinks the less important features' coefficient to zero (i.e. feature selection)
- Disadvantages: In "large p, small n" situations (i.e. high-dimensional data with few examples), LASSO selects at most n variables before it saturates. If there is a group of highly correlated variables, then the LASSO tends to select one variable from the group and ignore the others

Example: Prediction of Cattle Grazing Activities

• Wearable sensors have been explored as an alternative for real-time monitoring of cattle feeding behavior in grazing systems.

 Goal to evaluate the the effect of different cross-validation strategies on the prediction of grazing activities in cattle using wearable sensor (accelerometer) data and ML algorithms.

Ribeiro, L. A. C., Bresolin, T., Rosa, G. J. M., Casagrande, D. R., Danes, M. A. C. and Dórea, J. R. R. (2021) Nonlinear modeling to describe the pattern of 15 milk protein and nonprotein compounds over lactation in dairy cows. *Journal of Animal Science* 99(9): 1–8.

Material and Methods

- Six steers (average live weight of 345 ± 21 kg) had their behavior visually classified as grazing or not-grazing for a period of 15 d.
- Elastic Net Generalized Linear Model (GLM), Random Forest (RF), and Artificial Neural Network (ANN) were employed to predict grazing activity (grazing or not-grazing) using 3-axis accelerometer data.
- Three CV strategies were evaluated: holdout, leave-oneanimal-out (LOAO), and leave-one-day-out (LODO), all with similar dataset sizes (n \sim 57,000).

ising different validations strategies							
Method1	Accuracy	Error Rate	Sensitive	Specificity	PPV	NPV	
Leave-one-animal-out					-	_	
GLM	52.01	47.99	54.64	49.77	48.08	56.31	
RF	56.61	43.39	59.98	53.74	52.47	61.19	
ANN	57.06	42.94	53.63	59.98	53.29	60.31	
Leave-one-day-out							
GLM	48.57	51.43	26.70	67.66	41.86	51.4	
RF	61.20	38.80	71.98	51.79	56.57	67.94	
ANN	63.50	36.50	69.12	58.59	59.29	68.5	
Holdout (20%)							
GLM	58.88	41.12	66.68	51.98	55.14	63.79	
RF	76.48	23.52	78.30	74.86	73.39	79.58	
ANN	74.18	25.82	75.35	73.14	71.29	77.02	
Holdout (20%) – Replicates ²							
GLM	59.20 (0.29)	40.80	67.33	52.03	55.30	64.38	
RF	75.86 (0.30)	24.14	77.23	74.49	75.03	76.73	
ANN	72.21 (1.64)	27.79	70.92	73.48	72.69	71.8	

Results

- Overall, GLM delivered the worst prediction accuracy compared with the ML techniques, and ANN performed slightly better than RF for LOAO and LODO across CV strategies.
- The holdout yielded the highest nominal accuracy values for all three ML approaches, followed by LODO and LOAO.
- Nonetheless, the greater prediction accuracy of holdout CV may simply indicate a lack of data independence and the presence of carry-over effects from animals and grazing management.

Predictive Quality Metrics

• Prediction of Binary Outcomes

Metrics usually assess the frequency of two types of error: false positive (a.k.a. nuisance alarm) and false negative (a.k.a. missing alarm) errors via tables of errors, or confusion matrix:

Production	True Category (Ground Truth)			
Frediction	y = 0	y = 1		
$\hat{\mathbf{y}} = 0$	True Negative (TN)	False Negative (FN)		
$\hat{\mathbf{y}} = 1$	False Positive (FP)	True Positive (TP)		

Example:

Y = 0 for healthy Y = 1 for disease

Artificial Neural Networks

- P predictors \rightarrow H(P + 1) + (H + 1) parameters
- Parameters usually initialized to random values, and then specialized algorithms (e.g. back-propagation) are used to minimize the sum of squares of residuals
- NN tend to over-fit → strategies to avoid over-fitting include 'early stopping', and 'weight decay' (regularization similar to ridge regression)

Optimization using:
$$\sum_{i=1}^{n} (y_i - f_i(x))^2 + \lambda \sum_{k=1}^{H} \sum_{j=0}^{P} \beta_{jk}^2 + \lambda \sum_{k=0}^{H} \gamma_k^2$$

(predictors should be on the same scale $\rightarrow x_j^* = \frac{x_j - x_j}{s_i}$)

Artificial Neural Networks

- NN depicted before refers to a single-layer feed-forward network (Perceptron)
- Variations include multiple hidden layers, loops going both directions between layers, Bayesian approach, etc.
- Choice of NN architecture includes number of hidden units per layer, activation function (linear, sigmoid, hyperbolic tangent – Tanh, Rectified Linear Unit – ReLU, etc.)
- Model fitting strategies: average results of multiple NN with different starting values, pre-filter predictors with strong collinearity

Artificial Neural Networks

- Response variable y (predictand): single or multiple outputs; continuous, binary, or multi-category variable (C classes → C binary columns of dummy variables)
- For classification, an additional nonlinear transformation is used on the combination of hidden unites, for example the *softmax* transformation:

$$f_{i\ell}^*(x) = \frac{e^{f_{i\ell}(x)}}{\sum_l e^{f_{il}(x)}}$$

where $f_{il}(x)$ is the model prediction of the lth class and the ith sample

Support Vector Machine

- Let two outcome classes (A and B) coded as y = -1 and y = +1, and predictors $\mathbf{x}_i = (x_{i1} + x_{i2} + \dots + x_{iP})^T$
- D(x): decision value; if $D(x) > 0 \rightarrow class A$, otherwise class B
- New sample: $\mathbf{u} \to D(\mathbf{u}) = \beta_0 + \sum_{j=1}^{P} \beta_j u_j$

$$\rightarrow$$
 D(**u**) = $\beta_0 + \sum_{i=1}^n y_i \alpha_i \mathbf{x}_i^T \mathbf{u}$ (written as a function of the data)

Notice: Due to the dot product , predictors should be centered and scaled, i.e. $x_j^* = \frac{x_j - \bar{x}_j}{s_i}$)

Support Vector Machine

- Support Vector Regression
- Common technique: ϵ -sensitive regression (robust regression)

SSE: $\sum_{i=1}^{n} \hat{\epsilon}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2}$ (sensitive to outliers) Huber function: $\sum_{\hat{\epsilon} \leq \epsilon} (y_{i} - \hat{y}_{i})^{2} + \sum_{\hat{\epsilon} > \epsilon} |y_{i} - \hat{y}_{i}|$ Support Vector Regression: $\sum_{\hat{\epsilon} > \epsilon} |y_{i} - \hat{y}_{i}|$ (only look at outliers...)

Support Vector Machine

The robustness qualities of SVM models

Top: a small simulated data set with a single large outlier is used to show the difference between an ordinary regression line (red) and the linear SVM model (blue)

Middle: the SVM residuals versus the predicted values (the upper end of the y-axis scale was reduced to make the plot more readable). The plot symbols indicate the support vectors (shown as grey colored circles) and the other samples (red crosses). The horizontal lines are $\pm \epsilon = 0.01$

Bottom: A simulated sin wave with several outliers. The red line is an ordinary regression line (intercept and a term for sin(x)) and the blue line is a radial basis function SVM model

Decision Trees

- Basic Regression/Classification Trees:
- Partition the data into smaller, more homogeneous groups in terms of the response y, by determining:
 - the predictor to split on and value of the split
 - the depth (or complexity) of the tree
 - the prediction equation in the terminal nodes
- There are many algorithms for constructing regression/classification trees, for example the Classification and Regression Tree (CART)

Decision Trees

• CART starts with the entire data set S, and finds the predictor and split value that partition the data into two groups (S_1 and S_2) such that SSE is minimized:

$$SSE = \sum_{i \in S_1} (y_i - \bar{y}_1)^2 + \sum_{i \in S_2} (y_i - \bar{y}_2)^2$$

- Then, within each sub set, the method proceeds with additional partitions
- In classification, the partition seeks more 'pure' sets, i.e. sets containing a larger proportion of one class in each node; measures such as Gini index and cross entropy are generally used; Gini = $p_1(1 p_1) + p_2(1 p_2)$

Decision Trees

- Bagging (bootstrap aggregation):
 - Generate m bootstrap samples
 - Construct a tree model for each bootstrap
 - Average m prediction for any new sample
- Drawback of bagging: 'tree correlation'
- Random Forests: similar approach to bagging, but trees constructed for each bootstrap sample use k < P randomly selected of the original predictors
- Boosting: ensemble of weak classifiers, which are trained by increasing weights of incorrectly classified samples at each iteration. Algorithms include AdaBoost, and Stochastic Gradient Boosting

Prediction of Pig Weight

- Data on 655 pigs
- Boars and gilts from three commercial lines
- Weight across different ages (Scale EziWeigh5i, ste ±1%)
- Pigs were not fasting

Fernandes AFA, Dórea JRR, Fitzgerald R, Herring W and Rosa GJM (2019) A novel automated system to acquire biometric and morphological measurements, and predict body weight of pigs via 3D computer vision. *J. Anim. Sci.* 97: 496–508.

Improving Prediction of Pig Body Weight and Body Composition

- Body weight
- Body composition traits: Muscle depth (MD) and back fat (BF)

Trait	Mean	Standard deviation			
BF, mm	6.03	1.47			
MD, mm	65.07	6.19			
BW, kg	119.97	12.43			

Aloka SSD 500

Fernandes AFA, Dórea JRR, Valente BD, Fitzgerald R, Herring W and Rosa GJM (2020) Comparison of data analytics strategies in computer vision systems to predict pig body composition traits from 3D images. *Journal of Animal Science* 98:skaa250.

	Model for each frait				
Trait	Model	MAE	MASE	RMSE	R ²
BW, kg	LM	4.81	4.00	6.61	0.73
	PLS	4.62	3.85	6.48	0.74
	EN	4.55	3.79	6.39	0.75
	ANN	5.00	4.16	6.83	0.70
	DL	3.26	2.69	4.56	0.86
MD, mm	LM	4.10	6.30	5.16	0.35
	PLS	4.36	6.67	5.37	0.30
	EN	4.12	6.32	5.12	0.31
	ANN	4.61	7.07	5.77	0.21
	DL	3.28	5.02	4.34	0.50
BF, mm	LM	1.15	18.83	1.43	0.12
	PLS	1.13	18.95	1.40	0.10
	EN	1.08	18.00	1.35	0.16
	ANN	1.20	19.69	1.52	0.10
	DI.	0.80	13.56	1.11	0.45

Kernel Regression

- Let: $y_i = E[y_i|\mathbf{x}_i] + \varepsilon_i = g(\mathbf{x}_i) + \varepsilon_i$, where y_i (i = 1, 2, ..., n) is the response variable, $\mathbf{x}_i = [x_{i1}, x_{i2}, ..., x_{ip}]^T$ is the vector of explanatory variables (covariates), and $\varepsilon_i \sim^{iid}(0, \sigma^2)$ is the model residual
- Conditional expectation function: $g(\mathbf{x}_i) = \frac{1}{p(\mathbf{x})} \int yp(\mathbf{x}, y) dy$
- Consider a nonparametric kernel estimator of the p-dimensional density of the covariates (Silverman 1986):

$$\hat{p}(\mathbf{x}) = \frac{1}{nh^p} \sum_{i=1}^n K\left(\frac{\mathbf{x}_i - \mathbf{x}}{h}\right)$$

where $K\left(\frac{\mathbf{x}_i - \mathbf{x}}{h}\right)$ is the kernel function, **h** is a smoothing parameter, and **x** is the "focal point" value

Kernel Regression

p̂(x) is a p-dimensional density function so that the kernel function must be positive and ∫[∞]_{-∞} p̂(x)dx = 1, so that:

$$\frac{1}{hh^{p}} \sum_{i=1}^{n} \int_{-\infty}^{\infty} K\left(\frac{x_{i}-x}{h}\right) d\mathbf{x} = 1 \rightarrow \int_{-\infty}^{\infty} \frac{1}{h^{p}} K\left(\frac{x_{i}-x}{h}\right) d\mathbf{x} = 1$$

• Similarly (and assuming a single h), p(**x**, y) can be estimated as:

$$\hat{p}(\mathbf{x}, \mathbf{y}) = \frac{1}{nh^p} \sum_{i=1}^n K\left(\frac{y_i - y}{h}\right) K\left(\frac{\mathbf{x}_i - \mathbf{x}}{h}\right)$$

where $K\left(\frac{y_i-y}{h}\right)$ is also a kernel function.

• So that $\int y\hat{p}(\mathbf{x}, y)dy = \frac{1}{nh^p} \sum_{i=1}^n \left[\frac{1}{h} \int yK\left(\frac{y_i - y}{h}\right) dy\right] K\left(\frac{\mathbf{x}_i - \mathbf{x}}{h}\right)$

Reproducing Kernel Hilbert Spaces

- Statistical models based on reproducing kernel Hilbert spaces (RKHS) have been useful for regression (e.g., Wahba 1990), classification (e.g., Vapnik 1998), and smoothing in highly dimensional problems.
- Examples of application can be found in spatial statistics (e.g. 'Kriging'; Cressie, 1993), scatterplot smoothing (e.g. smoothing splines; Wahba, 1990), genetics and genomics (Gianola et al. 2008; de los Campos et al. 2009), etc.
- RKHS regression is connected with many other statistical approaches, such as additive models, splines, and mixed models.

Reproducing Kernel Hilbert Spaces

- Reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional.
- A Hilbert space is a vector space equipped with an inner product which defines a distance function for which it is a complete metric space.

David Hilbert (1862-1943)

251

252

RKHS Regression

- Regression model: $y_i = E[y_i | \mathbf{x}_i] + \varepsilon_i = g(\mathbf{x}_i) + \varepsilon_i$
- Estimation of g(**x**_i):
 - Least Squares or Maximum Likelihood: ĝ(x_i) = arg min l(y, x) with g(.) assumed known and expressed g in a parametric form, and l(y, x) is the loss function, a

measure of goodness-of-fit

2) Regularized regression: $\hat{g}(\mathbf{x}_i) = \arg \min\{l(\mathbf{y}, \mathbf{x}) + \lambda J(g)\},\$ where J(g) is a penalty on model complexity

RKHS Methods and Mixed Models

- The duality between Hilbert spaces of functions and positivedefinite functions is convenient, as it is easier to define a positive definite function on **x** than to define H explicitly
- Let K be an n×n positive definite matrix with elements $K(\mathbf{x}_i, \mathbf{x}_j)$, and $l(\mathbf{y}, \mathbf{x}) = (\mathbf{y} - g(\mathbf{x}))^T (\mathbf{y} - g(\mathbf{x}))$ be a residual sum of squares
- Under this setting, the optimization problem can be expressed as (Kimeldorf and Wahba 1970):

$$\min_{g}\{(\mathbf{y} - \mathbf{K}\mathbf{c})^{T}(\mathbf{y} - \mathbf{K}\mathbf{c}) + \lambda \mathbf{c}^{T}\mathbf{K}\mathbf{c}\}$$

where c is an $n \times 1$ vector of unknown constants.

RKHS Methods and Mixed Models

- Solution: $[\mathbf{K}^{\mathrm{T}}\mathbf{K} + \lambda\mathbf{K}]\hat{\mathbf{c}} = \mathbf{K}^{\mathrm{T}}\mathbf{y}$
- Given that $\mathbf{K} = \mathbf{K}^{\mathrm{T}}$ and \mathbf{K}^{-1} exists, premultiplication by \mathbf{K}^{-1} yields:

$$\mathbf{K} + \lambda \mathbf{I}]\hat{\mathbf{c}} = \mathbf{y}$$

• The estimated conditional expectation function is:

$$\hat{\mathbf{g}}(\mathbf{x}) = \mathbf{K}\hat{\mathbf{c}} = \mathbf{K}[\mathbf{K} + \lambda \mathbf{I}]^{-1}\mathbf{y} = \mathbf{W}\mathbf{y}$$

where $\mathbf{W} = \mathbf{K}[\mathbf{K} + \lambda \mathbf{I}]^{-1}$ is a projection matrix.

• Therefore, $\hat{\mathbf{g}}(\mathbf{x})$ is a weighted sum of the observations:

$$\hat{\mathbf{g}}(\mathbf{x}) = \sum_{j=1}^{n} w_{ij} y_j$$

where the weights w_{ij} are the entries of **W**.

256

- **Prior:** $c \sim N(0, K^{-1}\sigma_c^2)$
- If and σ_ϵ^2 are σ_c^2 known, the density of the conditional posterior distribution of c is:

$$p(\mathbf{c}|\mathbf{K}, \sigma_{\epsilon}^{2}, \sigma_{c}^{2}, \mathbf{y}) \propto \exp\left\{-\frac{1}{2\sigma_{\epsilon}^{2}}(\mathbf{y} - \mathbf{K}\mathbf{c})^{T}(\mathbf{y} - \mathbf{K}\mathbf{c})\right\} \exp\left\{-\frac{1}{2\sigma_{c}^{2}}\mathbf{c}^{T}\mathbf{K}\mathbf{c}\right\}$$

• This density is known to be multivariate normal with mean (mode) equal to $E[\mathbf{c}|\mathbf{K}, \sigma_{\epsilon}^2, \sigma_{c}^2, \mathbf{y}] = [\mathbf{K} + \lambda \mathbf{I}]^{-1}\mathbf{y}$, where $\lambda = \sigma_{\epsilon}^2/\sigma_{c}^2$

Building Kernels

- Selecting a kernel is the most critical stage in applying kernelbased algorithms
- Prior knowledge about a problem may be useful but it is not always enough for choosing a specific kernel
- Kernels can be selected using model comparison techniques, e.g. cross-validation or Bayesian methods
- In addition, bandwidth parameters control how fast the (co)variance drops as points get further apart in input space. For example, in a Gaussian kernel, h > 0 may be used to control how local the regression is

- The fact that any RKHS regression can be parameterized as a mixed model with specific (co)variance matrices implies that available packages for mixed model implementation can be used to perform RKHS regressions
- This choice is especially efficient in situations when there is an efficient algorithm for computing K⁻¹ directly from T, e.g. in animal and plant breeding where the inverse of the relationship matrix can be built directly from pedigree information

<equation-block><equation-block><equation-block><equation-block><equation-block>

Material and Methods

- Non-linear Kernels:
 - Gaussian kernel (GK): $\mathbf{GK}_{ii'} = \exp\left(-h\frac{\|\mathbf{M}_i \mathbf{M}_{i'}\|^2}{Q}\right)$

where $\|\mathbf{M}_i - \mathbf{M}_{i'}\|^2$ is the Euclidean distance between the vectors of SNP markers of individuals i and i' normalized to (0, 1)

- Arc-cosine kernel (Deep kernel, DK): similarity between two genotyped individuals given by the angle between their vectors of SNP markers $\theta_{i,i} = \cos^{-1}\left(\frac{\mathbf{M}_{i} \cdot \mathbf{M}_{i'}}{\mathbf{M}_{i'}}\right)$

$$\theta_{i,i\prime} = \cos^{-1}\left(\frac{\mathbf{M}_{i} \cdot \mathbf{M}_{i\prime}}{\|\mathbf{M}_{i}\| \|\mathbf{M}_{i\prime}\|}\right)$$

Recursive algorithm: $\begin{bmatrix} \mathbf{A}\mathbf{K}^{(l+1)}\left(\mathbf{M}_{i},\mathbf{M}_{i\prime}\right) = \frac{1}{\pi} \left[\mathbf{A}\mathbf{K}^{(l)}\left(\mathbf{M}_{i},\mathbf{M}_{i}\right)\mathbf{A}\mathbf{K}^{(l)}\left(\mathbf{M}_{i\prime},\mathbf{M}_{i\prime}\right)\right]^{\frac{1}{2}} J_{t}\left(\theta_{i,i\prime}^{(l)}\right) \\ \theta_{i,j}^{(l)} = \cos^{-1} \left\{ \mathbf{A}\mathbf{K}^{(l)}\left(\mathbf{M}_{i},\mathbf{M}_{j}\right) \left[\mathbf{A}\mathbf{K}^{(l)}\left(\mathbf{M}_{i},\mathbf{M}_{i}\right)\mathbf{A}\mathbf{K}^{(l)}\left(\mathbf{M}_{j},\mathbf{M}_{j}\right)\right]^{\frac{1}{2}} \right\} \end{bmatrix}$

Causal Inference

"I wish they didn't turn on that seatbelt sign so much! Every time they do, it gets bumpy."

Example

Inferring the Causal Effect of Number of Lambs Born on Milk Yield in Dairy Sheep

• Association between litter size (prolificacy) and milk yield (MY) has been shown in several species: mice (Skjfervold 1976 and Knight et al. 1986), rats (Yagil et al. 1976), pigs (Auldist 1998), goats (Heyden et al. 1978)

• Potential Confounders: Age (parity) Genetics Year, Season, etc.

Estimated causal effect of prolificacy on MY using Propensity Scores with Matched Samples, as well as using marginal and partial regression of prolificacy on MY.

	Effect (L/lamb)	SE	95% CI	
Simple Matching	20.52*	3.77	[13.13, 27.91]	
Bias-corrected Matching	12.62*	3.63	[5.50, 19.74]	
Marginal regression	43.93*	3.87	[36.34, 51.52]	
Partial Linear regression	3.25	3.21	[-3.04, 9.56]	

Ferreira VC, Valente BD, Thomas DL and Rosa GJM. Causal effect of prolificacy on milk yield in dairy sheep using propensity score. *Journal of Animal Science* 100: 8443–8450, 2017.

282

Experimental and Observational Studies		
Feature	Controlled Experiment	Observational Study
Randomization	Yes (hopefully!)	No (partially)
Sample size	Smaller	Larger
# Factors involved	Fewer	Multiple; interactions
Cost of data collection	Higher	Lower; quite often already available
Causal inference	Gold standard	Complex, but feasible (?)
Direct applicability of result to commercial settings	Not always	Yes
Prediction of field outcome	s Complex	Gold standard
Most important issues	Imperfect randomization, missing data, narrower conclusion/extrapolation	Confounding, selection bias, data size/complexity 305

Additional Topics		
 Some Other Machine Learning Methods Recurrent Neural Network Convolutional Neural Network Graph Neural Networks Strategies for Implementing Big Data Analysis 		
306		

Recurrent Neural Network

- RNNs is a class of ANNs that gained popularity for time series analysis. RNNs process sequences of data by internally looping through each element of the sequence, instead of processing the whole input in a single step.
- Recurrent layers are characterized by their step function, which in the previous simple example was an activation function applied to a weighted sum of input and state features. Two other popular types of recurrent layers are Long Short-Term Memory (LSTM) layers and Gated Recurrent Units (GRUs).

307

