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Chapter 11:   WinTDR Algorithms 
 
 
 This chapter discusses the algorithms WinTDR uses to analyze waveforms 
including: Bulk Dielectric Constant; Soil Water Content; Electrical Conductivity; 
Calibrations for probe length and impedance; and Offset values. We will first discuss the 
steps used for analysis directly, then explain how we formulate reflection coefficient 
waveforms and equations we use for calibrations. 
 At the end of this chapter we explain the differences between sloped and flat 
analysis and give some examples of how we find the first and second derivatives. 
 
WinTDR uses the following steps for analysis. 

1. User positions the waveform in the window. 
2. Pre-process: Program applies a moving average to the wave and finds the first and 

second derivatives of the wave. 
3. Algorithm finds location of the First Peak. 
4. Algorithm finds location of the Second Reflection. 
5. Algorithm uses the distance between these two points to calculate the bulk 

dielectric constant (εb). 
6. Algorithm uses Topp’s equation to calculate the soil water content. 
7. Algorithm uses an extended wave to calculate soil electrical conductivity. 

 

 
Figure 1: The first Peak and Second Reflection on data, which is 
uniformly captured by the data window.  

 
Position the Waveform in the Window 

• Position the waveform in the window. See Figure 1. For more information about 
positioning the waveform see Chapter 4. 

• Set the Peak Tolerance.  The user defined peak tolerance is a band around the 
user selected first peak location.  It reduces the chances for failure.  The first peak 
is usually constant, but changes in temperature may change the cable bulk 
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dielectric, causing slight variations.  Defining a first peak and a tolerance 
neighborhood eliminates failures that may occur otherwise.  (See Figure 2). 

• The Second Reflection should be beyond the mid-point of the window for 
accuracy. 

Pre-Process 
• The wave is first smoothed using a moving average defined by the user. The 

moving average is normally set to zero. However, in some cases, there may be 
excess noise due to poor cable shielding and/or high amounts of interference. In 
these cases the user may set the moving average to a non-zero value which 
removes some of the noise for the analysis.  

• Take its first derivative according to Eq.(1). 
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• Take its second derivative by Eq.(2). 
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Find the Location of the First Peak 

• If the user has not defined a first peak, the program looks for candidate inflection 
points in the wave by scanning the first derivative and finding all candidate 
maxima.  See Figure E1-2. 

• If the user had defined a first peak, the program looks for candidate peaks within 
the defined peak tolerance. If none are found it uses the user defined peak as the 
calculated peak. 

• The two largest peaks (in amplitude) will be the inflections on either side of the 
first peak. See Figure E1-2. 

• Now it finds the true 
first peak, also called the 
first reflection. 

• Two tangent lines from 
the inflections on either 
side of the candidate are 
intersected to create a 
position of the first peak. 

 
 
 
 

 
Find the Location of the Second Reflection 
 
 The second reflection refers to the intersection of the tangent from the max 
inflection on the wave trace after the first peak, with either a tangent from the local 
minimum or a tangent of averaged slope from an anchored point between the local 
minimum and the first peak.  See Figure 3 and 4. 

 
Figure 2: Shows a waveform with a well-defined first 
peak, which will use the calculated first peak because 
it falls within the neighborhood. 
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• The local minimum in this case refers to the minimum encountered after the first 

peak. 
• The anchored point refers to a point from 0 to 50% between the local minimum 

and the first peak.  The exact placement defaults to 33% but may be changed by 
the user. 

• The max inflection refers to the maximum inflection point after the first peak. 
 

The two tangent lines are intersected.  Where these two lines intersect can be 
called location 2, or the Second Reflection.  Location 1 is the first peak.  Their difference 
(location 2 – location 1) is used to directly calculate the bulk dielectric constant (εb).  
See Equation 3 below. 

 
 Some difficulty can be 
encountered in finding location 2 
when the soil is saline, very wet and 
with a high clay content. Signal 
attenuation may be so strong that the 
second reflection is lost and the 
ability to determine water content is 
also lost.  This happens at about EC 
levels > 3 dS/m in soil. Frequency 
domain analysis is sometimes used to 
determine water content when the 
second reflection of the wave cannot 
be located. 
 
 To better locate this second 
reflection, within soils with moderate 
(low attenuation) salinity, a line not 
from the local minimum, but rather 
from the slope before the local 
minimum is used.  This method is 
called the sloped line method.  See Figure 3 & 4 for a graphical explanation of the 
differences between the two methods. 
 
 Otherwise, if the waveform is relatively uniform, the second reflection can be 
found using the flat line method.  The user should use judgment in choosing which 
method to use. WinTDR default is the flat line method. 
 
Summary of Finding the Second Reflection 
 
 Two slightly different methods of finding the Second Reflection can be used: 

• Flat line method (designed for well defined waveforms) 
• Sloped line method (designed for waveforms from soil of high salinity or clay 

content). 

Figure 3: A three pronged probe immersed in 
Tap Water (Ec=03 dS/m), displays virtually no 
difference in the second reflection calculation 
between the tow methods.  This is because the 
rising limb dominates the intersection. 
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Figure 4: A three-prong probe immersed in saline 
solution (Ec=1.8 dS/m).  (a) Shows a tangent from 
an anchor point 25% between the first peak and the 
max inflection.  (b) Shows a tangent from the local 
minimum.  Both tangents intersect the tangent from 
the inflection point.  This intersection is the second 
reflection.  Notice the difference, (a) intersects 
slightly to the left of (b). 

 
 
Computation of Water Content Using Equations for Bulk Dielectric Constant and 
Topp’s (1980) Empirical Expression 
 
Compute the bulk dielectric constant, using: 
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Where: 
c  =  the speed of light 
v  =  velocity of propagation  
L  =  length of TDR probe 
T  =  travel time for the pulse to traverse the length of the embedded wave guide 

 
v  Is usually set to 0.99, but can be changed in the program. 
T Is found from the difference between time 1 and time 2 (converted to time from the 

first peak and second reflections). 
L  Is the measured length of the TDR Probe of calculated from measurements using the 

TDR Probe. 
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Calculate Water Content 
 
 The computed bulk dielectric constant (εb) is then used in Topp’s (1980) equation 
to calculate the volumetric water content according to: 
 

362422 103.4105.51092.2103.5 bbbv xxxx εεεθ −−−− +−+−=   (4) 
The user may change the coefficients of Equation 4 to adjust the calculation and 

calibrate for individual soil samples. 
 
Calculate Electrical Conductivity 
 

Calculating Ec uses the Giese and Tiemann (1975) method given by Eq. (5) 
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 Where: 
 ε0 = Permittivity of free space (8.854 x 10-12 F/m). 
 c = The speed of light in a vacuum (2.99792458 x 108 m/s). 
 L = Probe Length (m). 
 Z0 = Characteristic Probe Impedance. (Ω) (Must be obtained for each probe by 

calibration.  See “Calculate Characteristic Impedance” below) 
 Zu = TDR cable tester load impedance (typically 50 Ω) 
 V0 = Incident pulse voltage (Obtained from the collected waveform. See Figure 5 

below.) 
 Vinf = The return pulse voltage after multiple reflections have died out.  (Obtained 

from the collected waveform.  See Figure 5 below.) 
 
And Since ε0 c = 1/(120π), Eq. (5) is simplified as: 
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To find V0 and Vinf  we require an extra waveform that demonstrates the long-term 
behavior or the medium. We call this waveform a long wave. This waveform has a 
distance per division of 5 meters and begins 5 meters before the user defined cursor 
position (or 0.1 meters which ever is greater).  Returned is a waveform similar to Figure 
5. 
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Once V0 and Vinf  are acquired, we now can plug each variable into Equation 2 to find the 
Electrical conductivity of the medium. 
 
Now we will discuss how we formulate reflection coefficient values and how we 
calibrate length and impedance. 
 
Formulating Reflection Coefficient values  (Rho) 
 
 To calculate Rho values we use Eq. 7. 
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Where: 
 P = Waveform Pixel Value. 
 Z0 = The TDR Connector reference voltage. This is found by obtaining a waveform 

of –0.6 meters and averaging the first 10 waveform pixel values. It will 
change depending on the medium the probe is in. 

 V0 = This value is the same as described in Ec calculation (Figure 5), except note 
that it is a pixel value, not a rho value. 

 
When we “Re-Offset” Probe, we retrieve a new waveform from –0.6 meters with 
distance per division of .5m and average Z0 and V0 again. It is important to re-offset if the 
probe medium is changed. 
 
Calibrating Probe Length 
 
 Calibrating the probe length is simply manipulating Eq. 3 to arrive at Eq. 8.  
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Figure 5: How V0 and Vinf  are acquired. 
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If the user provides an expected bulk dielectric for the solution, we can calculate the 
effective length of the probe using Eq. 8. (cT actually is the second reflection - peak 
position). 
 
Calibrating Characteristic Impedance 
 
 To calibrate characteristic impedance we use Eq. 9. 
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Where: 
 εb = Bulk Dielectric 
 Zu = TDR cable tester load impedance (typically 50 Ω) 
 V0 = Incident pulse voltage (Obtained from the collected waveform. See Figure 5.) 
 V1 = Minimum before second reflection. 
 
 
Differences Between Slope and Flat Method 
 
 There are virtually no differences between the flat and slope method.  For 
illustration purposes consider the following test: 
 

• Three pronged TDR probes are embedded in two soil bins – one wetted with tap 
water (Normal) and the other with salt solution (Salty).  The soil type in both 
bins in Millville silt loam.  The electrical conductivity (Ec) of tap water was 0.3 
dS/m, whereas the Ec of the CaCl+2 solution was 5.3 dS/m.  The two soil bins 
were brought to saturation and allowed to dry by means of evaporation. 

• One document was opened in WinTDR and readings taken every fifteen minutes 
for both of these soil bins.  This document was then saved.  A duplicate document 
was created by using the same setup file, (Save as command).  One was set to 
take readings using the flat line method and the other the sloped line method.  The 
results show that no significant difference occurs between the two methods, 
especially over a long period of time.  See Figure 5. (NOTE: In WinTDR 6.0 
Beta, you would have to change the analysis method each time analysis was done. 
It does not support multiple analyzer’s.) 
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Figure 6: From Top-Left Clockwise: Slope vs. Flat Tangent method (Ec = 0.3 dS/m); Time vs. 
Water Content and Ec, (Ec = 0.3 dS/m); Time vs. Water Content and Ec (Ec = 5.6 dS/m); Sloped 
vs. Flat Tangent method (Ec = 5.6 dS/m). 

 
 As Figure 6 illustrates, the Flat Line and the Sloped Line methods produce 
similar interpretations of soil water contents (even under salty conditions)… 
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Example: Finding the first derivative. 
 
Some may consider trying the following experiment on their own. 

1. Acquire a well-defined waveform using the WinTDR software.  
2. Save the waveform to file. 
3. Import the waveform to a good spreadsheet application. 
4. Graph the points of the acquired waveform, you should see something like Figure 

E1-1. 
 

 
Figure E1-1: An actual waveform created by importing the points from a 
WINTDR wave output file to a Microsoft Excel Spreadsheet.  Notice how well 
it is positioned with the first peak near the left side of the screen, and the second 
reflection near the right side of the screen. 

 
6. Take the first derivative.  Using the previous wave trace in the spreadsheet, create 

a formula that acts on each of the points that reads “=(h1-f1)/2” where the two 
cells referenced are the cells directly on each side of the cell in question. 
Note: WinTDR allows the user to choose how many points on each side. This 
allows increased accuracy if wanted. By default WinTDR uses the points three 
away on each side. 

7. Recover the lost points on the ends by copying the values of their closest 
neighbor.  Near the ends, this error is very insignificant.  WinTDR doesn’t use 
these end values for any calculation, but it will make your graph more 
presentable. 

8. Plot the first derivative.  See Figure E1-2. 
9. Take the second derivative by applying the same algorithm to the first derivative.  

Graph this to get Figure E1-3. 
 
Note: This shows the slope crossing the x-axis at approximately point 35.  In your 
spreadsheet, the exact figure can be seen where the slope crosses the x-axis.  Figure E1-3 
also shows the inflection that brackets the first peak.  WinTDR uses the intersection of 
the tangents from the inflections on either side of the first peak, as the calculated first 
peak. 
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Figure E1-2: Shows the first derivative of the wave trace.  Notice the slope hits 
zero at approximately point 36. 

 
Figure E1-3: Shows the second derivative.  The inflection points are clearly 
visible as the points of crossing the x-axis. 

 
 
Electrical Conductivity Calculations Using the Castiglione and Shouse (2003) 
Method: 
The Castiglione and Shouse (2003) method for calculating electrical conductivity takes 
into account cable and connector losses that occur along the transmission line by scaling 
reflection coefficients with reference to reflection coefficients measured in air and with 
the probe short-circuited. The waveforms in air and with the shorted-circuited probe 
represent an envelope that the subsequently measured media fall between (see Figure 6). 
For highest electrical conductivity measurement accuracy, it is recommended that the 
Castiglione and Shouse (2003) method be used. 
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Figure 6: Waveforms in air and with the probe short-circuited form an envelope that all 
subsequent measured waveforms fall between. Here waveforms taken in de-ionized water 
and in a 1.0dS/m solution are shown for comparison.  
 
Electrical conductivity calculations (Ec) use the Giese and Tiemann (1975) method 
written in terms of reflection coefficient (written in terms of voltage previously) given by 
equation 10: 
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Where:  
ε0=permittivity of free space (8.854x10-12 F/m). 
c=speed of light in vacuum (3.0x108 m/s). 
L=length of the probe.  
Z0=characteristic probe impedance (Ω) (determined by calibration, discussed 
below). 
Zu=characteristic cable impedance (equal to 50Ω).  
ρscaled=reflection coefficient after multiple reflections have died out and scaled in 
reference to reflection coefficients in air and with the probe short circuited 
(scaling reflection coefficients is discussed below). 

 
Probe Impedance Calibration Using the Castiglione and Shouse (2003) Method: 
Characteristic probe impedance is determined by calculating electrical conductance (G) 
values from scaled infinite reflection coefficients which are taken from waveform(s) 
measured in sample(s) of known Ec (determined with an Ec meter). Conductance is 
calculated according to equation 11.  
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The calculated conductance values are then plotted as a function of the known Ec values 
and a regression line is fitted to the point(s) and forced through the origin. The inverse of 
the slope of the line is the cell constant (Kp) according to equation 12: 
 
 pKEcG /=    [S]  (12) 

 The ε0cZ0/L term in equation 12 is equivalent to the probe constant and is given by 
equation 13: 
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The probe impedance is now calculated by rearranging equation 13 and using the 
calibrated cell constant to solve for Z0, which is then used as a constant (for the particular 
probe) in equation 10 to calculate Ec. NOTE: Probe impedance values calculated using 
this method are specific to the probe/cable/connector/multiplexer setup used during 
calibration. If this setup is changed a new probe cell constant and impedance value 
should be calculated for the new setup.  
 
Scaling Reflection Coefficients for Use in the Castiglione and Shouse (2003) Method: 
Reflection coefficients in WINTDR are determined from an average of 10 discrete 
waveform points (calculated using equation 7 described above). Infinite reflection 
coefficients are located at approximately 600 m. The reflection coefficient is scaled with 
reference to measured air and measured short-circuited probe reflection coefficients in 
order to account for cable, connector, and multiplexer signal voltage losses. Reflection 
coefficients are scaled according to equation 14: 
 

 12 inf +







−
−

=
scair

air
scaled ρρ

ρρρ   (14)   

Where: 
ρinf=infinite reflection coefficient from waveform measured in solution of known 
conductivity. 
ρair=infinite reflection coefficient from waveform measured in air.  
ρsc=infinite reflection coefficient from waveform measured with the probe short 
circuited (instructions on short circuiting probes are given below). 

 
Short Circuiting Probes 
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Probes can be short circuited by clamping a conductor, such as copper, between the 
prongs of the probe, or inserting two of the probe prongs into a copper pipe. Figure 1 
shows examples of a probe being short circuited.  
 

 
 

 
 
Figure 7: (a) Probe short-circuited with a thin copper sheet and flat (duckbill) vicegrip 
pliers and (b) probe shorted circuited with a copper pipe. 


